Distribution of values of quadratic forms at integral points

被引:0
|
作者
P. Buterus
F. Götze
T. Hille
G. Margulis
机构
[1] University of Göttingen,Department of Mathematics
[2] University of Bielefeld,Faculty of Mathematics
[3] Northwestern University,Department of Mathematics
[4] Yale University,Department of Mathematics
[5] New Haven,undefined
来源
Inventiones mathematicae | 2022年 / 227卷
关键词
11P21; 11D75;
D O I
暂无
中图分类号
学科分类号
摘要
The number of lattice points in d-dimensional hyperbolic or elliptic shells {m:a<Q[m]<b}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{m : a<Q[m]<b\}$$\end{document}, which are restricted to rescaled and growing domains rΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\,\Omega $$\end{document}, is approximated by the volume. An effective error bound of order o(rd-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(r^{d-2})$$\end{document} for this approximation is proved based on Diophantine approximation properties of the quadratic form Q. These results allow to show effective variants of previous non-effective results in the quantitative Oppenheim problem and extend known effective results in dimension d≥9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 9$$\end{document} to dimension d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 5$$\end{document}. They apply to wide shells when b-a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b-a$$\end{document} is growing with r and to positive definite forms Q. For indefinite forms they provide explicit bounds (depending on the signature or Diophantine properties of Q) for the size of non-zero integral points m in dimension d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 5$$\end{document} solving the Diophantine inequality |Q[m]|<ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|Q[m] |< \varepsilon $$\end{document} and provide error bounds comparable with those for positive forms up to powers of logr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log r$$\end{document}.
引用
收藏
页码:857 / 961
页数:104
相关论文
共 50 条
  • [1] Distribution of values of quadratic forms at integral points
    Buterus, P.
    Goetze, F.
    Hille, T.
    Margulis, G.
    [J]. INVENTIONES MATHEMATICAE, 2022, 227 (03) : 857 - 961
  • [2] VALUES OF QUADRATIC-FORMS AT INTEGRAL POINTS
    BOREL, A
    PRASAD, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (06): : 217 - 220
  • [3] ASYMPTOTIC DISTRIBUTION OF VALUES OF ISOTROPIC QUADRATIC FORMS AT S-INTEGRAL POINTS
    Han, Jiyoung
    Lim, Seonhee
    Mallahi-Karai, Keivan
    [J]. JOURNAL OF MODERN DYNAMICS, 2017, 11 : 501 - 550
  • [4] VALUES OF QUADRATIC-FORMS AT PRIMITIVE INTEGRAL POINTS
    DANI, SG
    MARGULIS, GA
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 308 (07): : 199 - 203
  • [5] VALUES OF QUADRATIC-FORMS AT PRIMITIVE INTEGRAL POINTS
    DANI, SG
    MARGULIS, GA
    [J]. INVENTIONES MATHEMATICAE, 1989, 98 (02) : 405 - 424
  • [6] VALUES OF ISOTROPIC QUADRATIC-FORMS AT S-INTEGRAL POINTS
    BOREL, A
    PRASAD, G
    [J]. COMPOSITIO MATHEMATICA, 1992, 83 (03) : 347 - 372
  • [7] VALUES OF INDEFINITE QUADRATIC-FORMS AT INTEGRAL POINTS AND FLOWS ON SPACES OF LATTICES
    BOREL, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 32 (02): : 184 - 204
  • [8] On values of binary quadratic forms at integer points
    Choudhuri, Manoj
    Dani, S. G.
    [J]. MATHEMATICAL RESEARCH LETTERS, 2015, 22 (04) : 1023 - 1045
  • [9] EQUAL VALUES OF BINARY FORMS AT INTEGRAL POINTS
    EVERTSE, JH
    GYORY, K
    SHOREY, TN
    TIJDEMAN, R
    [J]. ACTA ARITHMETICA, 1987, 48 (04) : 379 - 396
  • [10] LATTICE POINTS OF INDEFINITE QUADRATIC FORMS WITH INTEGRAL COEFFICIENTS
    VENUGOP.V
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES SECTION A, 1961, A 54 (06): : 352 - &