Structure of Gauge-Invariant Lagrangians

被引:0
|
作者
Marco Castrillón López
Jaime Muñoz Masqué
Eugenia Rosado María
机构
[1] UCM,Departamento de Álgebra, Geometría y Topología, Facultad de Matemáticas
[2] CSIC,Instituto de Tecnologías Físicas y de la Información
[3] Escuela Técnica Superior de Arquitectura,Departamento de Matemática Aplicada
[4] UPM,undefined
来源
关键词
Bundle of connections, gauge invariance, jet bundles, curvature mapping, functionally independent gauge-invariant Lagrangians, structure of Lie algebras; Primary 35F20; Secondary 53C05; 58A20; 58D19; 58E15; 58E30; 81T13;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of gauge fields in Theoretical Physics poses several mathematical problems of interest in Differential Geometry and in Field Theory. Below, we tackle one of these problems: the existence of a finite system of generators of gauge-invariant Lagrangians and how to compute them. More precisely, if p:C→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p:C\rightarrow M$$\end{document} is the bundle of connections on a principal G-bundle π:P→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :P\rightarrow M$$\end{document}, and G is a semisimple connected Lie group, then a finite number L1,⋯,LN′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1,\dotsc ,L_{N^\prime }$$\end{document} of gauge-invariant Lagrangians defined on J1C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^1C$$\end{document} is proved to exist such that for any other gauge-invariant Lagrangian L∈C∞(J1C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\in C^\infty (J^1C)$$\end{document}, there exists a function F∈C∞(RN′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\in C^\infty ({\mathbb {R}}^{N^\prime })$$\end{document}, such that L=F(L1,⋯,LN′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=F(L_1,\dotsc ,L_{N^\prime })$$\end{document}. Several examples are dealt with explicitly.
引用
收藏
相关论文
共 50 条