Partial least squares classification for high dimensional data using the PCOUT algorithm

被引:0
|
作者
Asuman Turkmen
Nedret Billor
机构
[1] The Ohio State University,Department of Statistics
[2] Auburn University,Department of Mathematics and Statistics
来源
Computational Statistics | 2013年 / 28卷
关键词
Partial least squares; Classification; Outlier; PCOUT; Robustness;
D O I
暂无
中图分类号
学科分类号
摘要
Classification of samples into two or multi-classes is to interest of scientists in almost every field. Traditional statistical methodology for classification does not work well when there are more variables (p) than there are samples (n) and it is highly sensitive to outlying observations. In this study, a robust partial least squares based classification method is proposed to handle data containing outliers where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ll p.$$\end{document} The proposed method is applied to well-known benchmark datasets and its properties are explored by an extensive simulation study.
引用
收藏
页码:771 / 788
页数:17
相关论文
共 50 条
  • [31] AN ONLINE NIPALS ALGORITHM FOR PARTIAL LEAST SQUARES
    Stott, Alexander E.
    Kanna, Sithan
    Mandic, Danilo P.
    Pike, William T.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4177 - 4181
  • [32] Kernelized partial least squares for feature reduction and classification of gene microarray data
    Land, Walker H.
    Qiao, Xingye
    Margolis, Daniel E.
    Ford, William S.
    Paquette, Christopher T.
    Perez-Rogers, Joseph F.
    Borgia, Jeffrey A.
    Yang, Jack Y.
    Deng, Youping
    [J]. BMC SYSTEMS BIOLOGY, 2011, 5
  • [33] Classification of multivariate functional data on different domains with Partial Least Squares approaches
    Issam-Ali Moindjié
    Sophie Dabo-Niang
    Cristian Preda
    [J]. Statistics and Computing, 2024, 34
  • [34] Classification of multivariate functional data on different domains with Partial Least Squares approaches
    Moindjie, Issam-Ali
    Dabo-Niang, Sophie
    Preda, Cristian
    [J]. STATISTICS AND COMPUTING, 2024, 34 (01)
  • [35] A new Classifier for Remote Sensing Data Classification : Partial Least-Squares
    Du, H. Q.
    Ge, H. L.
    Liu, E. B.
    Xu, W. B.
    Jin, W.
    Fan, W. Y.
    [J]. 2008 INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS, 2008, : 52 - +
  • [36] Complex Chemical Data Classification and Discrimination Using Locality Preserving Partial Least Squares Discriminant Analysis
    Aminu, Muhammad
    Ahmad, Noor Atinah
    [J]. ACS OMEGA, 2020, 5 (41): : 26601 - 26610
  • [37] Numerically stable locality-preserving partial least squares discriminant analysis for efficient dimensionality reduction and classification of high-dimensional data
    Ahmad, Noor Atinah
    [J]. HELIYON, 2024, 10 (04)
  • [38] Approximate Regularized Least Squares Algorithm for Classification
    Peng, Jinn
    Aved, Alex J.
    [J]. PATTERN RECOGNITION AND TRACKING XXIX, 2018, 10649
  • [39] The importance of balanced data sets for partial least squares discriminant analysis: classification problems using hyperspectral imaging data
    Lindstrom, Susanne W.
    Geladi, Paul
    Jonsson, Oskar
    Pettersson, Fredrik
    [J]. JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2011, 19 (04) : 233 - 241
  • [40] Multivariate calibration of spectrophotometric data using a partial least squares with data fusion
    Gao, Ling
    Ren, Shouxin
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2010, 76 (3-4) : 363 - 368