Partial least squares classification for high dimensional data using the PCOUT algorithm

被引:0
|
作者
Asuman Turkmen
Nedret Billor
机构
[1] The Ohio State University,Department of Statistics
[2] Auburn University,Department of Mathematics and Statistics
来源
Computational Statistics | 2013年 / 28卷
关键词
Partial least squares; Classification; Outlier; PCOUT; Robustness;
D O I
暂无
中图分类号
学科分类号
摘要
Classification of samples into two or multi-classes is to interest of scientists in almost every field. Traditional statistical methodology for classification does not work well when there are more variables (p) than there are samples (n) and it is highly sensitive to outlying observations. In this study, a robust partial least squares based classification method is proposed to handle data containing outliers where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ll p.$$\end{document} The proposed method is applied to well-known benchmark datasets and its properties are explored by an extensive simulation study.
引用
收藏
页码:771 / 788
页数:17
相关论文
共 50 条
  • [1] Partial least squares classification for high dimensional data using the PCOUT algorithm
    Turkmen, Asuman
    Billor, Nedret
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (02) : 771 - 788
  • [2] Sparse Partial Least Squares Classification for High Dimensional Data
    Chung, Dongjun
    Keles, Sunduz
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2010, 9 (01)
  • [3] Naive Bayes combined with partial least squares for classification of high dimensional microarray data
    Mehmood, Tahir
    Kanwal, Arzoo
    Butt, Muhammad Moeen
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 222
  • [4] MULTIVARIATE FUNCTIONAL PARTIAL LEAST SQUARES FOR CLASSIFICATION USING LONGITUDINAL DATA
    Dembowska, Sonia
    Frangi, Alex
    Houwing-Duistermaat, Jeanine
    Liu, Haiyan
    [J]. THEORETICAL BIOLOGY FORUM, 2021, 114 (01) : 75 - 88
  • [5] Survival forest with partial least squares for high dimensional censored data
    Zhou, Lifeng
    Wang, Hong
    Xu, Qingsong
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 179 : 12 - 21
  • [6] Classification using generalized partial least squares
    Ding, BY
    Gentleman, R
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (02) : 280 - 298
  • [7] Principal balances of compositional data for regression and classification using partial least squares
    Nesrstova, V.
    Wilms, I.
    Palarea-Albaladejo, J.
    Filzmoser, P.
    Martin-Fernandez, J. A.
    Friedecky, D.
    Hron, K.
    [J]. JOURNAL OF CHEMOMETRICS, 2023, 37 (12)
  • [8] Spectral data classification using locally weighted partial least squares classifier
    Song, Weiran
    Wang, Hui
    Maguire, Paul
    Nibouche, Omar
    [J]. DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT, 2018, 11 : 700 - 707
  • [9] Tumor classification by partial least squares using microarray gene expression data
    Nguyen, DV
    Rocke, DM
    [J]. BIOINFORMATICS, 2002, 18 (01) : 39 - 50
  • [10] A Partial Least Squares Algorithm for Microarray Data Analysis Using the VIP Statistic for Gene Selection and Binary Classification
    Burguillo, Francisco J.
    Corchete, Luis A.
    Martin, Javier
    Barrera, Inmaculada
    Bardsley, William G.
    [J]. CURRENT BIOINFORMATICS, 2014, 9 (03) : 348 - 359