On Extremal Graphs for Zero Forcing Number

被引:0
|
作者
Yi-Ping Liang
Jianxi Li
Shou-Jun Xu
机构
[1] Lanzhou University,School of Mathematics and Statistics, Gansu Center for Applied Mathematics
[2] Minnan Normal University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Zero forcing number; Connected forcing number; Girth; Triangle-free; Subcubic; 05C69; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
A subset S of vertex set V(G) of a graph G is a zero forcing set of G if iteratively adding vertices to S from V(G)\S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G){\setminus }S$$\end{document} that are the unique neighbor in V(G)\S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G){\setminus } S$$\end{document} of some vertex in S, results in the entire V(G) of G. Additionally, if the subgraph induced by S is connected, then S is a connected forcing set of G. The zero (resp., connected) forcing number, denoted by F(G) (resp., Fc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_c(G)$$\end{document}), of G is the minimum cardinality of a zero (resp., connected) forcing set of G. Davila and Kenter [Theory Appl. Graphs, 2(2) (2015) Article 1] proved that F(G)≤n-g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)\le n-g+2$$\end{document} for graphs G of finite girth g and order n(≥g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n (\ge g)$$\end{document}. In this paper, first, we restrict G to be connected and improve the upper bound according to the value of g: F(G)≤n-g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)\le n-g+2$$\end{document} when g=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=3, 4$$\end{document} or n; F(G)≤n-g+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)\le n-g+1$$\end{document} when g=5,6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=5, 6$$\end{document} or n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document}(n≥6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n \ge 6)$$\end{document} and F(G)≤n-g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)\le n-g$$\end{document} when 7≤g≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7\le g\le n-2$$\end{document}. Further, the extremal graphs are characterized, respectively. Davila et al. [Graphs Combin. 34 (2018) 1159-1174] proved a similar upper bound on Fc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_c(G)$$\end{document} for 2-connected graphs G with n vertices and finite girth g: Fc(G)≤n-g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_c(G)\le n-g+2$$\end{document}. Secondly, we prove that Fc(G)=n-g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_c(G)=n-g+2$$\end{document} if and only if G is Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{n}$$\end{document}, or Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}$$\end{document}, or Ka,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{a,b}$$\end{document} for integers a,b≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \ge 2$$\end{document}, a+b=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+b=n$$\end{document}. Finally, we also characterize all connected triangle-free or subcubic graphs G of order n with F(G)=n-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)=n-3$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Zero forcing number of graphs with a power law degree distribution
    Vazquez, Alexei
    [J]. PHYSICAL REVIEW E, 2021, 103 (02)
  • [22] Families of graphs with maximum nullity equal to zero forcing number
    Alameda, Joseph S.
    Curl, Emelie
    Grez, Armando
    Hogben, Leslie
    Kingston, O'Neill
    Schulte, Alex
    Young, Derek
    Young, Michael
    [J]. SPECIAL MATRICES, 2018, 6 (01): : 56 - 67
  • [23] ZERO FORCING NUMBER, MAXIMUM NULLITY, AND PATH COVER NUMBER OF SUBDIVIDED GRAPHS
    Catral, Minerva
    Cepek, Anna
    Hogben, Leslie
    My Huynh
    Lazebnik, Kirill
    Peters, Travis
    Young, Michael
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 906 - 922
  • [24] On the Relationship Between the Zero Forcing Number and Path Cover Number for Some Graphs
    Montazeri, Zeinab
    Soltankhah, Nasrin
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (03) : 767 - 776
  • [25] On the Relationship Between the Zero Forcing Number and Path Cover Number for Some Graphs
    Zeinab Montazeri
    Nasrin Soltankhah
    [J]. Bulletin of the Iranian Mathematical Society, 2020, 46 : 767 - 776
  • [26] Maximum nullity and zero forcing number of graphs with rank at most 4
    Vatandoost, Ebrahim
    Nozari, Katayoun
    [J]. COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [27] Some properties of the closed global shadow graphs and their zero forcing number
    Raksha, M. R.
    Dominic, Charles
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2022, 14 (01) : 137 - 154
  • [28] Characterization of All Graphs with a Failed Skew Zero Forcing Number of 1
    Johnson, Aidan
    Vick, Andrew E.
    Narayan, Darren A.
    [J]. MATHEMATICS, 2022, 10 (23)
  • [29] An Inverse Approach for Finding Graphs with a Failed Zero Forcing Number of k
    Kaudan, Chirag
    Taylor, Rachel
    Narayan, Darren A.
    [J]. MATHEMATICS, 2023, 11 (19)
  • [30] METRIC DIMENSION AND ZERO FORCING NUMBER OF TWO FAMILIES OF LINE GRAPHS
    Eroh, Linda
    Kang, Cong X.
    Yi, Eunjeong
    [J]. MATHEMATICA BOHEMICA, 2014, 139 (03): : 467 - 483