On Extremal Graphs for Zero Forcing Number

被引:0
|
作者
Yi-Ping Liang
Jianxi Li
Shou-Jun Xu
机构
[1] Lanzhou University,School of Mathematics and Statistics, Gansu Center for Applied Mathematics
[2] Minnan Normal University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Zero forcing number; Connected forcing number; Girth; Triangle-free; Subcubic; 05C69; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
A subset S of vertex set V(G) of a graph G is a zero forcing set of G if iteratively adding vertices to S from V(G)\S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G){\setminus }S$$\end{document} that are the unique neighbor in V(G)\S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G){\setminus } S$$\end{document} of some vertex in S, results in the entire V(G) of G. Additionally, if the subgraph induced by S is connected, then S is a connected forcing set of G. The zero (resp., connected) forcing number, denoted by F(G) (resp., Fc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_c(G)$$\end{document}), of G is the minimum cardinality of a zero (resp., connected) forcing set of G. Davila and Kenter [Theory Appl. Graphs, 2(2) (2015) Article 1] proved that F(G)≤n-g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)\le n-g+2$$\end{document} for graphs G of finite girth g and order n(≥g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n (\ge g)$$\end{document}. In this paper, first, we restrict G to be connected and improve the upper bound according to the value of g: F(G)≤n-g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)\le n-g+2$$\end{document} when g=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=3, 4$$\end{document} or n; F(G)≤n-g+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)\le n-g+1$$\end{document} when g=5,6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=5, 6$$\end{document} or n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document}(n≥6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n \ge 6)$$\end{document} and F(G)≤n-g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)\le n-g$$\end{document} when 7≤g≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7\le g\le n-2$$\end{document}. Further, the extremal graphs are characterized, respectively. Davila et al. [Graphs Combin. 34 (2018) 1159-1174] proved a similar upper bound on Fc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_c(G)$$\end{document} for 2-connected graphs G with n vertices and finite girth g: Fc(G)≤n-g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_c(G)\le n-g+2$$\end{document}. Secondly, we prove that Fc(G)=n-g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_c(G)=n-g+2$$\end{document} if and only if G is Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{n}$$\end{document}, or Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}$$\end{document}, or Ka,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{a,b}$$\end{document} for integers a,b≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \ge 2$$\end{document}, a+b=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+b=n$$\end{document}. Finally, we also characterize all connected triangle-free or subcubic graphs G of order n with F(G)=n-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(G)=n-3$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On Extremal Graphs for Zero Forcing Number
    Liang, Yi-Ping
    Li, Jianxi
    Xu, Shou-Jun
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [2] THE ZERO FORCING NUMBER OF GRAPHS
    Kalinowski, Thomas
    Kamcev, Nina
    Sudakov, Benny
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 95 - 115
  • [3] Extremal values and bounds for the zero forcing number
    Gentner, Michael
    Penso, Lucia D.
    Rautenbach, Dieter
    Souza, Ueverton S.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 214 : 196 - 200
  • [4] On the zero forcing number of graphs and their splitting graphs
    Chacko, Baby
    Dominic, Charles
    Premodkumar, K. P.
    [J]. ALGEBRA AND DISCRETE MATHEMATICS, 2019, 28 (01): : 29 - 43
  • [5] On graphs maximizing the zero forcing number
    Liang, Yi-Ping
    Xu, Shou-Jun
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 334 : 81 - 90
  • [6] On zero forcing number of graphs and their complements
    Eroh, Linda
    Kang, Cong X.
    Yi, Eunjeong
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (01)
  • [7] Brushing Number and Zero-Forcing Number of Graphs and Their Line Graphs
    Aras Erzurumluoğlu
    Karen Meagher
    David Pike
    [J]. Graphs and Combinatorics, 2018, 34 : 1279 - 1294
  • [8] Brushing Number and Zero-Forcing Number of Graphs and Their Line Graphs
    Erzurumluoglu, Aras
    Meagher, Karen
    Pike, David
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1279 - 1294
  • [9] The Zero Forcing Number of Graphs with the Matching Number and the Cyclomatic Number
    Yu Jing
    Wenqian Zhang
    Shengjin Ji
    [J]. Graphs and Combinatorics, 2023, 39
  • [10] The Zero Forcing Number of Graphs with the Matching Number and the Cyclomatic Number
    Jing, Yu
    Zhang, Wenqian
    Ji, Shengjin
    [J]. GRAPHS AND COMBINATORICS, 2023, 39 (04)