Behaviour of skewness, kurtosis and normality tests in long memory data

被引:0
|
作者
Mohamed Boutahar
机构
[1] University of Méditerranée,GREQAM
来源
关键词
Hermite polynomials; Jarque–Bera normality test; Kurtosis; Long memory data; Skewness;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the limiting distributions for empirical estimators of the coefficient of skewness, kurtosis, and the Jarque–Bera normality test statistic for long memory linear processes. We show that these estimators, contrary to the case of short memory, are neither \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{n}}$$\end{document}-consistent nor asymptotically normal. The normalizations needed to obtain the limiting distributions depend on the long memory parameter d. A direct consequence is that if data are long memory then testing normality with the Jarque–Bera test by using the chi-squared critical values is not valid. Therefore, statistical inference based on skewness, kurtosis, and the Jarque–Bera normality test, needs a rescaling of the corresponding statistics and computing new critical values of their nonstandard limiting distributions.
引用
收藏
页码:193 / 215
页数:22
相关论文
共 50 条