Behaviour of skewness, kurtosis and normality tests in long memory data

被引:1
|
作者
Boutahar, Mohamed [1 ]
机构
[1] Univ Aix Marseille 2, GREQAM, Marseille, France
来源
STATISTICAL METHODS AND APPLICATIONS | 2010年 / 19卷 / 02期
关键词
Hermite polynomials; Jarque-Bera normality test; Kurtosis; Long memory data; Skewness; TIME-SERIES; REGRESSION RESIDUALS; INFLATION RATES; LIMIT-THEOREMS; FUNCTIONALS; VOLATILITY;
D O I
10.1007/s10260-009-0124-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish the limiting distributions for empirical estimators of the coefficient of skewness, kurtosis, and the Jarque-Bera normality test statistic for long memory linear processes. We show that these estimators, contrary to the case of short memory, are neither root n-consistent nor asymptotically normal. The normalizations needed to obtain the limiting distributions depend on the long memory parameter d. A direct consequence is that if data are long memory then testing normality with the Jarque-Bera test by using the chi-squared critical values is not valid. Therefore, statistical inference based on skewness, kurtosis, and the Jarque-Bera normality test, needs a rescaling of the corresponding statistics and computing new critical values of their nonstandard limiting distributions.
引用
收藏
页码:193 / 215
页数:23
相关论文
共 50 条