Stochastic Lohe Matrix Model on the Lie Group and Mean-Field Limit

被引:0
|
作者
Dohyun Kim
Jeongho Kim
机构
[1] National Institute for Mathematical Sciences,Institute of New Media and Communications
[2] Seoul National University,undefined
来源
关键词
Lohe matrix model; Mean-field limit; Stability; Stochastic process; 82C10; 82C22; 35Q84; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a Lohe matrix model in a random environment where each oscillator can be regarded as an element of a general matrix Lie group G. In order to make the stochastic system stays on G for all time, we introduce suitable noise terms so that the underlying manifold G is positively invariant under the stochastic system. Then, we formally derive the Fokker-Planck type equation defined on G×g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\times \mathfrak {g}$$\end{document} in which g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document} denotes the Lie algebra corresponding to G. After identifying the target Fokker-Planck equation, we especially consider the unitary group G=U(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbf {U}(d)$$\end{document} and show that the equation on U(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {U}(d)$$\end{document} admits a global unique solution and that it can be rigorously derived using a stochastic mean-field limit procedure with a convergence rate of order O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/\sqrt{N})$$\end{document}. Finally, we restrict our concern to G=SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbf {SU}(2)$$\end{document} to provide explicit calculation and present the nonlinear stability of an incoherent state for the Fokker-Planck equation depending on the relation between parameters.
引用
收藏
页码:1467 / 1514
页数:47
相关论文
共 50 条
  • [21] UNIFORM STABILITY AND MEAN-FIELD LIMIT FOR THE AUGMENTED KURAMOTO MODEL
    Ha, Seung-Yeal
    Kim, Jeongho
    Park, Jinyeong
    Zhang, Xiongtao
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2018, 13 (02) : 297 - 322
  • [22] Solitary states in the mean-field limit
    Kruk, N.
    Maistrenko, Y.
    Koeppl, H.
    [J]. CHAOS, 2020, 30 (11)
  • [23] OPTIMAL POLICIES FOR CONVEX SYMMETRIC STOCHASTIC DYNAMIC TEAMS AND THEIR MEAN-FIELD LIMIT
    Sanjari, Sina
    Yuksel, Serdar
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (02) : 777 - 804
  • [24] Weak disorder in the stochastic mean-field model of distance II
    Bhamidi, Shankar
    Van der Hofstad, Remco
    Hooghiemstra, Gerard
    [J]. BERNOULLI, 2013, 19 (02) : 363 - 386
  • [25] WEAK DISORDER ASYMPTOTICS IN THE STOCHASTIC MEAN-FIELD MODEL OF DISTANCE
    Bhamidi, Shankar
    van der Hofstad, Remco
    [J]. ANNALS OF APPLIED PROBABILITY, 2012, 22 (01): : 29 - 69
  • [26] Graphop mean-field limits and synchronization for the stochastic Kuramoto model
    Gkogkas, Marios Antonios
    Juettner, Benjamin
    Kuehn, Christian
    Martens, Erik Andreas
    [J]. CHAOS, 2022, 32 (11)
  • [27] Maximal Steiner Trees in the Stochastic Mean-Field Model of Distance
    Davidson, A.
    Ganesh, A.
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (06): : 826 - 838
  • [28] STOCHASTIC EFFECTS IN MEAN-FIELD DYNAMOS
    MOSS, D
    BRANDENBURG, A
    TAVAKOL, R
    TUOMINEN, I
    [J]. ASTRONOMY & ASTROPHYSICS, 1992, 265 (02) : 843 - 849
  • [29] Exact Stochastic Mean-Field dynamics
    Lacroix, Denis
    Hupin, Guillaume
    [J]. FUSION 08, 2009, 1098 : 128 - +
  • [30] Continuum limit of the lattice Lohe group model and emergent dynamics
    Cho, Hangjun
    Ha, Seung-Yeal
    Kang, Myeongju
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9783 - 9818