Stochastic Lohe Matrix Model on the Lie Group and Mean-Field Limit

被引:0
|
作者
Dohyun Kim
Jeongho Kim
机构
[1] National Institute for Mathematical Sciences,Institute of New Media and Communications
[2] Seoul National University,undefined
来源
关键词
Lohe matrix model; Mean-field limit; Stability; Stochastic process; 82C10; 82C22; 35Q84; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a Lohe matrix model in a random environment where each oscillator can be regarded as an element of a general matrix Lie group G. In order to make the stochastic system stays on G for all time, we introduce suitable noise terms so that the underlying manifold G is positively invariant under the stochastic system. Then, we formally derive the Fokker-Planck type equation defined on G×g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\times \mathfrak {g}$$\end{document} in which g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document} denotes the Lie algebra corresponding to G. After identifying the target Fokker-Planck equation, we especially consider the unitary group G=U(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbf {U}(d)$$\end{document} and show that the equation on U(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {U}(d)$$\end{document} admits a global unique solution and that it can be rigorously derived using a stochastic mean-field limit procedure with a convergence rate of order O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/\sqrt{N})$$\end{document}. Finally, we restrict our concern to G=SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbf {SU}(2)$$\end{document} to provide explicit calculation and present the nonlinear stability of an incoherent state for the Fokker-Planck equation depending on the relation between parameters.
引用
收藏
页码:1467 / 1514
页数:47
相关论文
共 50 条
  • [1] Stochastic Lohe Matrix Model on the Lie Group and Mean-Field Limit
    Kim, Dohyun
    Kim, Jeongho
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (06) : 1467 - 1514
  • [2] A Mean-Field Limit of the Lohe Matrix Model and Emergent Dynamics
    Golse, Francois
    Ha, Seung-Yeal
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 234 (03) : 1445 - 1491
  • [3] A Mean-Field Limit of the Lohe Matrix Model and Emergent Dynamics
    François Golse
    Seung-Yeal Ha
    [J]. Archive for Rational Mechanics and Analysis, 2019, 234 : 1445 - 1491
  • [4] Mean-field limit for the stochastic Vicsek model
    Bolley, Francois
    Canizo, Jose A.
    Carrillo, Jose A.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 339 - 343
  • [5] PERIODIC BEHAVIOR OF THE STOCHASTIC BRUSSELATOR IN THE MEAN-FIELD LIMIT
    SCHEUTZOW, M
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1986, 72 (03) : 425 - 462
  • [6] A MEAN-FIELD LIMIT OF THE PARTICLE SWARMALATOR MODEL
    Ha, Seung-Yeal
    Jung, Jinwook
    Kim, Jeongho
    Park, Jinyeong
    Zhang, Xiongtao
    [J]. KINETIC AND RELATED MODELS, 2021, 14 (03) : 429 - 468
  • [7] MEAN-FIELD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS: A LIMIT APPROACH
    Buckdahn, Rainer
    Djehiche, Boualem
    Li, Juan
    Peng, Shige
    [J]. ANNALS OF PROBABILITY, 2009, 37 (04): : 1524 - 1565
  • [8] Recursive tree processes and the mean-field limit of stochastic flows
    Mach, Tibor
    Sturm, Anja
    Swart, Jan M.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 63
  • [9] MEAN-FIELD LIMIT FOR A CLASS OF STOCHASTIC ERGODIC CONTROL PROBLEMS
    Albeverio, Sergio
    de Vecchi, Francesco C.
    Romano, Andrea
    Ugolini, Stefania
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (01) : 479 - 504
  • [10] Convex Symmetric Stochastic Dynamic Teams and Their Mean-Field Limit
    Sanjari, Sina
    Yuksel, Serdar
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 4662 - 4667