A note on the values of weighted q-Bernstein polynomials and weighted q-Genocchi numbers

被引:0
|
作者
Serkan Araci
Mehmet Açikgöz
机构
[1] Hasan Kalyoncu University,Department of Economics, Faculty of Economics, Administrative and Social Science
[2] University of Gaziantep,Department of Mathematics, Faculty of Arts and Science
关键词
Genocchi numbers and polynomials; -Genocchi numbers and polynomials; weighted ; -Genocchi numbers and polynomials; Bernstein polynomials; -Bernstein polynomials; weighted ; -Bernstein polynomials; 05A10; 11B65; 11B68; 11B73;
D O I
暂无
中图分类号
学科分类号
摘要
The rapid development of q-calculus has led to the discovery of new generalizations of Bernstein polynomials and Genocchi polynomials involving q-integers. The present paper deals with weighted q-Bernstein polynomials (or called q-Bernstein polynomials with weight α) and weighted q-Genocchi numbers (or called q-Genocchi numbers with weight α and β). We apply the method of generating function and p-adic q-integral representation on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} _{p}$\end{document}, which are exploited to derive further classes of Bernstein polynomials and q-Genocchi numbers and polynomials. To be more precise, we summarize our results as follows: we obtain some combinatorial relations between q-Genocchi numbers and polynomials with weight α and β. Furthermore, we derive an integral representation of weighted q-Bernstein polynomials of degree n based on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} _{p}$\end{document}. Also we deduce a fermionic p-adic q-integral representation of products of weighted q-Bernstein polynomials of different degrees n1,n2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_{1},n_{2},\ldots $\end{document} on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} _{p}$\end{document} and show that it can be in terms of q-Genocchi numbers with weight α and β, which yields a deeper insight into the effectiveness of this type of generalizations. We derive a new generating function which possesses a number of interesting properties which we state in this paper.
引用
收藏
相关论文
共 50 条
  • [31] On q-Euler Numbers Related to the Modified q-Bernstein Polynomials
    Kim, Min-Soo
    Kim, Daeyeoul
    Kim, Taekyun
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [32] On the multiple q-Genocchi and Euler numbers
    T. Kim
    [J]. Russian Journal of Mathematical Physics, 2008, 15 : 481 - 486
  • [33] On a Bivariate Kind of Q-Euler and Q-Genocchi Polynomials
    M. Masjed-Jamei
    M. R. Beyki
    [J]. Ukrainian Mathematical Journal, 2021, 73 : 85 - 98
  • [34] On a Bivariate Kind of Q-Euler and Q-Genocchi Polynomials
    Masjed-Jamei, M.
    Beyki, M. R.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (01) : 85 - 98
  • [35] On the Distribution of the q-Euler Polynomials and the q-Genocchi Polynomials of Higher Order
    Jang, Leechae
    Kim, Taekyun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008,
  • [36] IDENTITIES ON THE MODIFIED q-EULER AND q-BERNSTEIN POLYNOMIALS AND NUMBERS WITH WEIGHT
    Rim, Seog-Hoon
    Jeong, Joohee
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (01) : 39 - 44
  • [37] q-Bernstein polynomials and their iterates
    Ostrovska, S
    [J]. JOURNAL OF APPROXIMATION THEORY, 2003, 123 (02) : 232 - 255
  • [38] On Multiple Interpolation Functions of the q-Genocchi Polynomials
    Rim, Seog-Hoon
    Jin, Jeong-Hee
    Moon, Eun-Jung
    Lee, Sun-Jung
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [39] Some Relations of the Twisted q-Genocchi Numbers and Polynomials with Weight α and Weak Weight β
    Kang, J. Y.
    Lee, H. Y.
    Jung, N. S.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [40] A New Approach to q-Bernoulli Numbers and q-Bernoulli Polynomials Related to q-Bernstein Polynomials
    Acikgoz, Mehmet
    Erdal, Dilek
    Araci, Serkan
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2010,