A note on the values of weighted q-Bernstein polynomials and weighted q-Genocchi numbers

被引:0
|
作者
Serkan Araci
Mehmet Açikgöz
机构
[1] Hasan Kalyoncu University,Department of Economics, Faculty of Economics, Administrative and Social Science
[2] University of Gaziantep,Department of Mathematics, Faculty of Arts and Science
关键词
Genocchi numbers and polynomials; -Genocchi numbers and polynomials; weighted ; -Genocchi numbers and polynomials; Bernstein polynomials; -Bernstein polynomials; weighted ; -Bernstein polynomials; 05A10; 11B65; 11B68; 11B73;
D O I
暂无
中图分类号
学科分类号
摘要
The rapid development of q-calculus has led to the discovery of new generalizations of Bernstein polynomials and Genocchi polynomials involving q-integers. The present paper deals with weighted q-Bernstein polynomials (or called q-Bernstein polynomials with weight α) and weighted q-Genocchi numbers (or called q-Genocchi numbers with weight α and β). We apply the method of generating function and p-adic q-integral representation on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} _{p}$\end{document}, which are exploited to derive further classes of Bernstein polynomials and q-Genocchi numbers and polynomials. To be more precise, we summarize our results as follows: we obtain some combinatorial relations between q-Genocchi numbers and polynomials with weight α and β. Furthermore, we derive an integral representation of weighted q-Bernstein polynomials of degree n based on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} _{p}$\end{document}. Also we deduce a fermionic p-adic q-integral representation of products of weighted q-Bernstein polynomials of different degrees n1,n2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_{1},n_{2},\ldots $\end{document} on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} _{p}$\end{document} and show that it can be in terms of q-Genocchi numbers with weight α and β, which yields a deeper insight into the effectiveness of this type of generalizations. We derive a new generating function which possesses a number of interesting properties which we state in this paper.
引用
收藏
相关论文
共 50 条
  • [1] A note on the values of weighted q-Bernstein polynomials and weighted q-Genocchi numbers
    Araci, Serkan
    Acikgoz, Mehmet
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 9
  • [2] q-BERNSTEIN POLYNOMIALS ASSOCIATED WITH q-GENOCCHI NUMBERS AND POLYNOMIALS
    Rim, Seog-Hoon
    Jeong, Joo-Hee
    Lee, Sun-Jung
    Jin, Jeong-Hee
    Moon, Eun-Jung
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (06) : 1006 - 1013
  • [3] A Note on Some Properties of the Weighted q-Genocchi Numbers and Polynomials
    Jang, L. C.
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [4] Some Identities of the Twisted q-Genocchi Numbers and Polynomials with Weight α and q-Bernstein Polynomials with Weight α
    Lee, H. Y.
    Jung, N. S.
    Ryoo, C. S.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [5] ANALYTIC CONTINUATION OF WEIGHTED q-GENOCCHI NUMBERS AND POLYNOMIALS
    Araci, Serkan
    Acikgoz, Mehmet
    Gursul, Aynur
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03): : 457 - 462
  • [6] A note on the q-Genocchi numbers and polynomials
    Kim, Taekyun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [7] A Study on the Fermionic p-Adic q-Integral Representation on Zp Associated with Weighted q-Bernstein and q-Genocchi Polynomials
    Araci, Serkan
    Erdal, Dilek
    Seo, Jong Jin
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [8] On the weighted q-Bernstein polynomials associated with the twisted q-Bernoulli numbers
    Kim, T.
    Lee, B.
    Ryoo, C. S.
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (05) : 842 - 850
  • [9] Some identities on the weighted q-Euler numbers and q-Bernstein polynomials
    Taekyun Kim
    Young-Hee Kim
    Cheon S Ryoo
    [J]. Journal of Inequalities and Applications, 2011
  • [10] Some identities on the weighted q-Euler numbers and q-Bernstein polynomials
    Kim, Taekyun
    Kim, Young-Hee
    Ryoo, Cheon S.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,