Optimality Conditions for Approximate Solutions in Multiobjective Optimization Problems

被引:0
|
作者
Ying Gao
Xinmin Yang
HeungWingJoseph Lee
机构
[1] Chongqing Normal University,Department of Mathematics
[2] The Hong Kong Polytechnic University,Department of Applied Mathematics
关键词
Approximate Solution; Efficient Solution; Vector Optimization; Directional Derivative; Tangent Cone;
D O I
暂无
中图分类号
学科分类号
摘要
We study first- and second-order necessary and sufficient optimality conditions for approximate (weakly, properly) efficient solutions of multiobjective optimization problems. Here, tangent cone, [inline-graphic not available: see fulltext]-normal cone, cones of feasible directions, second-order tangent set, asymptotic second-order cone, and Hadamard upper (lower) directional derivatives are used in the characterizations. The results are first presented in convex cases and then generalized to nonconvex cases by employing local concepts.
引用
收藏
相关论文
共 50 条