Positive Solutions of a Nonlocal and Nonvariational Elliptic Problem

被引:0
|
作者
Lingjun Liu
Feilin Shi
机构
[1] Chinese Academy of Sciences,Institute of Applied Mathematics, Academy of Mathematics and Systems Science
[2] Hunan Normal University,School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2021年 / 41卷
关键词
positive solutions; nonvariational elliptic problem; a priori estimates; 35A05; 35B45; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will study the nonlocal and nonvariational elliptic problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{{ - (1 + a\|u\|_q^{\alpha q})\Delta u = |u{|^{p - 1}}u + h(x,u,\nabla u)\,{\rm{in}}\,\,\,\Omega ,} \hfill \cr {u = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,on\,\,\,\partial \Omega ,} \hfill \cr } } \right.$$\end{document} where a > 0, α > 0, 1 < q < 2*, p ∈ (0, 2* − 1) {1} and Ω is a bounded smooth domain in ℝN (N ≥ 2). Under suitable assumptions about h(x, u, ∇u), we obtain a priori estimates of positive solutions for the problem (0.1). Furthermore, we establish the existence of positive solutions by making use of these estimates and of the method of continuity.
引用
收藏
页码:1764 / 1776
页数:12
相关论文
共 50 条