Multi-scale quantification and modeling of aged nanostructured silicon-based composite anodes

被引:0
|
作者
Thomas Vorauer
Praveen Kumar
Christopher L. Berhaut
Fereshteh F. Chamasemani
Pierre-Henri Jouneau
David Aradilla
Samuel Tardif
Stephanie Pouget
Bernd Fuchsbichler
Lukas Helfen
Selcuk Atalay
Widanalage D. Widanage
Stefan Koller
Sandrine Lyonnard
Roland Brunner
机构
[1] Materials Center Leoben Forschung GmbH,Institute for Photon Science and Synchrotron Radiation
[2] University of Grenoble Alpes,undefined
[3] CEA,undefined
[4] IRIG-MEM,undefined
[5] University of Grenoble Alpes,undefined
[6] CEA,undefined
[7] CNRS,undefined
[8] IRIG,undefined
[9] SyMMES,undefined
[10] Varta Micro Innovation GmbH,undefined
[11] Karlsruhe Institute of Technology,undefined
[12] Institut Laue–Langevin,undefined
[13] WMG,undefined
[14] University of Warwick,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Advanced anode material designs utilizing dual phase alloy systems like Si/FeSi2 nano-composites show great potential to decrease the capacity degrading and improve the cycling capability for Lithium (Li)-ion batteries. Here, we present a multi-scale characterization approach to understand the (de-)lithiation and irreversible volumetric changes of the amorphous silicon (a-Si)/crystalline iron-silicide (c-FeSi2) nanoscale phase and its evolution due to cycling, as well as their impact on the proximate pore network. Scattering and 2D/3D imaging techniques are applied to probe the anode structural ageing from nm to μm length scales, after up to 300 charge-discharge cycles, and combined with modeling using the collected image data as an input. We obtain a quantified insight into the inhomogeneous lithiation of the active material induced by the morphology changes due to cycling. The electrochemical performance of Li-ion batteries does not only depend on the active material used, but also on the architecture of its proximity.
引用
收藏
相关论文
共 50 条
  • [21] Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features
    Dimov, Nikolay
    Xia, Yonggao
    Yoshio, Masaki
    JOURNAL OF POWER SOURCES, 2007, 171 (02) : 886 - 893
  • [22] Systematic Modeling of Pharmacokinetics Based on Multi-Scale Imaging
    Tang, Lei
    Su, Jing
    van de Ven, Anne L.
    O'Neill, Brian E.
    Li, Zheng
    Li, King C.
    Zhou, Xiaobo
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 593A - 593A
  • [23] Multi-Scale Modeling of Hypertension
    Veress, A. L.
    Raymond, G. M.
    Gullberg, G. T.
    Bassingthwaighte, J. B.
    CINC: 2009 36TH ANNUAL COMPUTERS IN CARDIOLOGY CONFERENCE, 2009, 36 : 385 - +
  • [24] Multi-scale texture modeling
    Hielscher, Ralf
    Schaeben, Helmut
    MATHEMATICAL GEOSCIENCES, 2008, 40 (01) : 63 - 82
  • [25] Multi-scale lung modeling
    Tawhai, Merryn H.
    Bates, Jason H. T.
    JOURNAL OF APPLIED PHYSIOLOGY, 2011, 110 (05) : 1466 - 1472
  • [26] Multi-Scale Modeling and Damage Analysis of Composite with Thermal Residual Stress
    Geng Han
    Zhidong Guan
    Zengshan Li
    Mi Zhang
    Tianya Bian
    Shanyi Du
    Applied Composite Materials, 2015, 22 : 289 - 305
  • [27] Multi-scale modeling approaches for functional nano-composite materials
    Reifsnider, Ken
    Huang, X.
    Ju, G.
    Solasi, R.
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (20) : 6751 - 6759
  • [28] Multi-Scale Texture Modeling
    Ralf Hielscher
    Helmut Schaeben
    Mathematical Geosciences, 2008, 40 : 63 - 82
  • [29] Multi-scale modeling of polyimides
    Clancy, TC
    POLYMER, 2004, 45 (20) : 7001 - 7010
  • [30] Multi-scale modeling for deformation mechanism analysis of composite joint substructures
    Tao, Mu-Xuan
    Nie, Jian-Guo
    ENGINEERING STRUCTURES, 2016, 118 : 55 - 73