Hausdorff and Packing Measures of the Level Sets of Iterated Brownian Motion

被引:0
|
作者
Yueyun Hu
机构
[1] Université Paris VI,Laboratoire de Probabilités, CNRS UMR 7599
来源
关键词
Iterated Brownian motion; Hausdorff measure; packing measure; level set; local time;
D O I
暂无
中图分类号
学科分类号
摘要
Burdzy and Khoshnevisan(9) have shown that the Hausdorff dimension of the level sets of an iterated Brownian motion (IBM) is equal to 3/4. In this paper, the exact Hausdorff measure function and the packing measure of the levels set of IBM are given. Our approach relies on some accurate analysis on the local asymptotic of local times.
引用
收藏
页码:313 / 346
页数:33
相关论文
共 50 条
  • [31] THE STRUCTURE OF EXTREME LEVEL SETS IN BRANCHING BROWNIAN MOTION
    Cortines, Aser
    Hartung, Lisa
    Louidor, Oren
    [J]. ANNALS OF PROBABILITY, 2019, 47 (04): : 2257 - 2302
  • [32] Packing-type measures of the sample paths of fractional brownian motion
    Chen Z.-L.
    Liu S.-Y.
    Xu C.-W.
    [J]. Acta Mathematicae Applicatae Sinica, 2005, 21 (2) : 335 - 352
  • [33] Packing-type Measures of the Sample Paths of Fractional Brownian Motion
    Zhen-long Chen~(1
    [J]. Acta Mathematicae Applicatae Sinica, 2005, (02) : 335 - 352
  • [34] Hausdorff and packing dimensions and sections of measures
    Jarvenpaa, M
    Mattila, P
    [J]. MATHEMATIKA, 1998, 45 (89) : 55 - 77
  • [35] Quasiminimal sets for Hausdorff measures
    David, Guy
    [J]. RECENT DEVELOPMENTS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 439 : 81 - 99
  • [36] HAUSDORFF MEASURES AND REMOVABLE SETS
    KAUFMAN, R
    [J]. LECTURE NOTES IN MATHEMATICS, 1987, 1275 : 215 - 222
  • [37] Scaling properties of Hausdorff and packing measures
    Csörnyei, M
    Mauldin, RD
    [J]. MATHEMATISCHE ANNALEN, 2001, 319 (04) : 817 - 836
  • [38] Packing and Hausdorff Measures of Stable Trees
    Duquesne, Thomas
    [J]. LEVY MATTERS I: RECENT PROGRESS IN THEORY AND APPLICATIONS: FOUNDATIONS, TREES AND NUMERICAL ISSUES IN FINANCE, 2010, 2001 : 93 - 136
  • [39] Scaling properties of Hausdorff and packing measures
    Marianna Csörnyei
    R. Daniel Mauldin
    [J]. Mathematische Annalen, 2001, 319 : 817 - 836
  • [40] The local time of iterated Brownian motion
    Csaki, E
    Csorgo, M
    Foldes, A
    Revesz, P
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (03) : 717 - 743