Linking data to models: data regression

被引:0
|
作者
Khuloud Jaqaman
Gaudenz Danuser
机构
[1] the Scripps Research Institute,Department of Cell Biology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mathematical modelling is an essential tool in systems biology. To ensure the accuracy of mathematical models, model parameters must be estimated using experimental data, a process called regression. Also, pre-regression and post-regression diagnostics must be employed to evaluate the model goodness-of-fit and the reliability of the estimated parameter values.Maximum likelihood estimation and least-squares fitting are the most common regression schemes, yielding parameter values and their variance–covariance matrix. They work under the assumption that the estimated parameters have a normal distribution. When this assumption is not valid, Bayesian inference can be used, yielding the full parameter distribution.Prior to regression, the structural identifiability of models must be assessed to determine whether model parameters can be uniquely determined and what data are required to achieve that.Post-regression diagnostics include testing a model's goodness-of-fit, determining which model among competing ones fits the data best, evaluating parameter determinability and evaluating parameter significance.Parameters in probabilistic models must be inferred by either indirect inference or by Bayesian methods. In indirect inference, model parameters are estimated by minimizing the differences between intermediate statistics that characterize simulated and experimental data.
引用
收藏
页码:813 / 819
页数:6
相关论文
共 50 条
  • [1] Linking data to models: data regression
    Jaqaman, Khuloud
    Danuser, Gaudenz
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (11) : 813 - 819
  • [2] SURVIVAL DATA AND REGRESSION MODELS
    Gregoire, G.
    [J]. STATISTICS FOR ASTROPHYSICS: METHODS AND APPLICATIONS OF THE REGRESSION, 2015, 66 : 125 - 147
  • [3] Regression models for cyclic data
    Upton, GJG
    Hickey, KA
    Stallard, A
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2003, 52 : 227 - 235
  • [4] Linking models and data on vegetation structure
    Hurtt, G. C.
    Fisk, J.
    Thomas, R. Q.
    Dubayah, R.
    Moorcroft, P. R.
    Shugart, H. H.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2010, 115
  • [5] Linear regression models for functional data
    Cardot, Herve
    Sarda, Pascal
    [J]. ART OF SEMIPARAMETRICS, 2006, : 49 - +
  • [6] Regression models based on experimental data
    Polyanchikov Y.N.
    Frolov E.M.
    Klyuikov D.S.
    [J]. Polyanchikov, Yu. N. (stinedit@yandex.ru), 1600, Allerton Press Incorporation (34): : 570 - 572
  • [7] Fitting Regression Models to Survey Data
    Lumley, Thomas
    Scott, Alastair
    [J]. STATISTICAL SCIENCE, 2017, 32 (02) : 265 - 278
  • [8] Regression models for method comparison data
    Dunn, Graham
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2007, 17 (04) : 739 - 756
  • [9] Regression models for count data in R
    Zeileis, Achim
    Kleiber, Christian
    Jackman, Simon
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (08): : 1 - 25
  • [10] Logistic Regression Models for Aggregated Data
    Whitaker, T.
    Beranger, B.
    Sisson, S. A.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 1049 - 1067