Linear regression models for functional data

被引:12
|
作者
Cardot, Herve [1 ]
Sarda, Pascal [2 ,3 ]
机构
[1] INRA, Unite Biometrie & Intelligence Artificielle, BP 27, F-31326 Castanet Tolosan, France
[2] Univ Toulouse 3, LSP, UMR C5583, F-31062 Toulouse, France
[3] Univ Toulouse le Mirail, GRIMM, EA2254, F-31058 Toulouse, France
来源
关键词
functional linear model; generalized functional linear model; conditional quantiles; regularization; roughness penalty; splines;
D O I
10.1007/3-7908-1701-5_4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses a specific case of regression analysis: the predictor is a random curve and the response is a scalar. We consider three models: the functional linear model, the functional generalized linear model and functional linear regression on quantiles. Spline functions are used to build estimators which minimize a penalized criterion. The method is illustrated by means of real data examples. Then, we give asymptotics results for these estimators.
引用
收藏
页码:49 / +
页数:3
相关论文
共 50 条
  • [1] Semiparametric partially linear regression models for functional data
    Zhang, Tao
    Wang, Qihua
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (09) : 2518 - 2529
  • [2] Asymptotic properties in semiparametric partially linear regression models for functional data
    Tao Zhang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 631 - 644
  • [3] Asymptotic Properties in Semiparametric Partially Linear Regression Models for Functional Data
    Tao ZHANG
    [J]. Acta Mathematicae Applicatae Sinica, 2013, (03) : 631 - 644
  • [4] Asymptotic Properties in Semiparametric Partially Linear Regression Models for Functional Data
    Zhang, Tao
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 631 - 644
  • [5] Clusterwise functional linear regression models
    Li, Ting
    Song, Xinyuan
    Zhang, Yingying
    Zhu, Hongtu
    Zhu, Zhongyi
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 158
  • [6] CLT in functional linear regression models
    Hervé Cardot
    André Mas
    Pascal Sarda
    [J]. Probability Theory and Related Fields, 2007, 138 : 325 - 361
  • [7] Linear calibration in functional regression models
    Bolfarine, H
    Lima, CROP
    Sandoval, MC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (10) : 2307 - 2328
  • [8] CLT in functional linear regression models
    Cardot, Herve
    Mas, Andre
    Sarda, Pascal
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (3-4) : 325 - 361
  • [9] Robust Functional Linear Regression Models
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. R JOURNAL, 2023, 15 (01): : 212 - 233
  • [10] Local linear regression for functional data
    Berlinet, A.
    Elamine, A.
    Mas, A.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (05) : 1047 - 1075