Variable selection for generalized linear mixed models by L1-penalized estimation

被引:1
|
作者
Andreas Groll
Gerhard Tutz
机构
[1] Ludwig-Maximilians-University Munich,Department of Mathematics
[2] Ludwig-Maximilians-University Munich,Institute for Statistics, Seminar for Applied Stochastics
来源
Statistics and Computing | 2014年 / 24卷
关键词
Generalized linear mixed model; Lasso; Gradient ascent; Penalty; Linear models; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
Generalized linear mixed models are a widely used tool for modeling longitudinal data. However, their use is typically restricted to few covariates, because the presence of many predictors yields unstable estimates. The presented approach to the fitting of generalized linear mixed models includes an L1-penalty term that enforces variable selection and shrinkage simultaneously. A gradient ascent algorithm is proposed that allows to maximize the penalized log-likelihood yielding models with reduced complexity. In contrast to common procedures it can be used in high-dimensional settings where a large number of potentially influential explanatory variables is available. The method is investigated in simulation studies and illustrated by use of real data sets.
引用
收藏
页码:137 / 154
页数:17
相关论文
共 50 条
  • [21] Orthogonality based penalized GMM estimation for variable selection in partially linear spatial autoregressive models
    Zhao, Peixin
    Gan, Haogeng
    Cheng, Suli
    Zhou, Xiaoshuang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (06) : 1676 - 1691
  • [22] Estimation and variable selection via frailty models with penalized likelihood
    Androulakis, E.
    Koukouvinos, C.
    Vonta, F.
    [J]. STATISTICS IN MEDICINE, 2012, 31 (20) : 2223 - 2239
  • [23] glmmPen: High Dimensional Penalized Generalized Linear Mixed Models
    Heiling, Hillary M.
    Rashid, Naim U.
    Li, Quefeng
    Ibrahim, Joseph G.
    [J]. R JOURNAL, 2023, 15 (04): : 106 - 128
  • [24] On the performance of algorithms for the minimization of l1-penalized functionals
    Loris, Ignace
    [J]. INVERSE PROBLEMS, 2009, 25 (03)
  • [25] Feature Selection via l1-Penalized Squared-Loss Mutual Information
    Jitkrittum, Wittawat
    Hachiya, Hirotaka
    Sugiyama, Masashi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (07) : 1513 - 1524
  • [26] A Penalized h-Likelihood Variable Selection Algorithm for Generalized Linear Regression Models with Random Effects
    Xie, Yanxi
    Li, Yuewen
    Xia, Zhijie
    Yan, Ruixia
    Luan, Dongqing
    [J]. COMPLEXITY, 2020, 2020
  • [27] Variable selection in generalized functional linear models
    Gertheiss, Jan
    Maity, Arnab
    Staicu, Ana-Maria
    [J]. STAT, 2013, 2 (01): : 86 - 101
  • [28] Predictive variable selection in generalized linear models
    Meyer, MC
    Laud, PW
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (459) : 859 - 871
  • [29] Variable selection for multivariate generalized linear models
    Wang, Xiaoguang
    Fan, Junhui
    [J]. JOURNAL OF APPLIED STATISTICS, 2014, 41 (02) : 393 - 406
  • [30] l1-Penalized censored Gaussian graphical model
    Augugliaro, Luigi
    Abbruzzo, Antonino
    Vinciotti, Veronica
    [J]. BIOSTATISTICS, 2020, 21 (02) : E1 - E16