A Priori L2-Error Estimates for Approximations of Functions on Compact Manifolds

被引:0
|
作者
David Marín
Marcel Nicolau
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
关键词
Primary 42C; Secondary 58C40; 33C45; 68U05; Fourier analysis; Riemannian manifolds; Laplacian operator; Spherical Harmonics; Approximation theory;
D O I
暂无
中图分类号
学科分类号
摘要
Given a C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}^{2}}$$\end{document} -function f on a compact riemannian manifold (X,g) we give a set of frequencies L=Lf(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L=L_{f}(\varepsilon)}$$\end{document} depending on a small parameter ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon > 0}$$\end{document} such that the relative L2-error ‖f-fL‖‖f‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{\|f-f^{L} \|}{\|f\|}}$$\end{document} is bounded above by ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document}, where fL denotes the L-partial sum of the Fourier series f with respect to an orthonormal basis of L2(X) constituted by eigenfunctions of the Laplacian operator Δ associated to the metric g.
引用
收藏
页码:51 / 62
页数:11
相关论文
共 50 条