L∞- AND L2-ERROR ESTIMATES FOR A FINITE VOLUME APPROXIMATION OF LINEAR ADVECTION

被引:18
|
作者
Merlet, Benoit [1 ]
机构
[1] Univ Paris 13, Inst Galilee, LAGA, F-93430 Villetaneuse, France
关键词
scalar conservation laws; advection equation; finite volume method; error estimate;
D O I
10.1137/060664057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence of the upwind finite volume scheme applied to the linear advection equation with a Lipschitz divergence-free speed in R-d. We prove an h(1/2-epsilon)-error estimate in the L-infinity(R-d x [0, T])-norm for Lipschitz initial data. The expected optimal result is an h(1/2)-error estimate. In a second part, we also prove an h(1/2)-error estimate in the L-infinity(0, T; L-2(R-d))-norm for initial data in H-1(R-d).
引用
收藏
页码:124 / 150
页数:27
相关论文
共 50 条