A method for identifying genetic heterogeneity within phenotypically defined disease subgroups

被引:0
|
作者
James Liley
John A Todd
Chris Wallace
机构
[1] JDRF/Wellcome Trust Diabetes and Inflammation Laboratory,Department of Medical Genetics
[2] NIHR Cambridge Biomedical Research Centre,Department of Medicine
[3] Cambridge Institute for Medical Research,Nuffield Department of Medicine
[4] University of Cambridge,undefined
[5] University of Cambridge,undefined
[6] Addenbrooke's Hospital,undefined
[7] Wellcome Trust Centre for Human Genetics,undefined
[8] University of Oxford,undefined
[9] MRC Biostatistics Unit,undefined
[10] Institute of Public Health,undefined
[11] University Forvie Site,undefined
[12] Cambridge,undefined
[13] UK.,undefined
来源
Nature Genetics | 2017年 / 49卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
James Liley, John Todd and Chris Wallace present a statistical method for determining whether disease-associated variants have different effect sizes in phenotypically defined subgroups of disease cases. The test can be combined with existing methods to determine whether genetic heterogeneity is driven by population stratification or by different mechanisms of disease pathology.
引用
收藏
页码:310 / 316
页数:6
相关论文
共 50 条
  • [41] The heterogeneity within Alzheimer's disease
    Ferreira, Daniel
    Wahlund, Lars-Olof
    Westman, Eric
    AGING-US, 2018, 10 (11): : 3058 - 3060
  • [42] Cliques within the crowd: identifying medical conference attendee subgroups by their motivations for participation
    Ram, Sai Sreenidhi
    Stricker, Daniel
    Pannetier, Carine
    Tabin, Nathalie
    Costello, Richard W.
    Stolz, Daiana
    Eva, Kevin W.
    Huwendiek, Soeren
    ADVANCES IN HEALTH SCIENCES EDUCATION, 2023, 28 (05) : 1485 - 1508
  • [43] ASSESSING THE VALUE OF DECISION TREES AS A METHOD FOR IDENTIFYING PATIENT SUBGROUPS
    Risson, V
    Jayanti, H.
    Filho, E.
    Rigg, J.
    Skelly, A.
    Bezlyak, V
    Regnier, S. A.
    VALUE IN HEALTH, 2017, 20 (09) : A744 - A744
  • [44] Cliques within the crowd: identifying medical conference attendee subgroups by their motivations for participation
    Sai Sreenidhi Ram
    Daniel Stricker
    Carine Pannetier
    Nathalie Tabin
    Richard W. Costello
    Daiana Stolz
    Kevin W. Eva
    Sören Huwendiek
    Advances in Health Sciences Education, 2023, 28 : 1485 - 1508
  • [45] HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery
    Leung, Alvin
    Bader, Gary D.
    Reimand, Jueri
    BIOINFORMATICS, 2014, 30 (15) : 2230 - 2232
  • [46] Genetic heterogeneity of sarcoglycanopathies within a single Tunisian families
    Fendri, K
    Amouri, R
    Kefi, M
    Hentati, F
    NEUROMUSCULAR DISORDERS, 2005, 15 (9-10) : 677 - 677
  • [47] Genetic heterogeneity within the same medulloblastoma: Illustrative cases
    Foreman, Nicholas
    Kleinschmidt-Demasters, B. K.
    Carstens, Billie
    NEURO-ONCOLOGY, 2008, 10 (03) : 467 - 467
  • [48] GENETIC AND PATHOGENETIC HETEROGENEITY WITHIN TOXIC DIFFUSE GOITER
    FINKE, R
    SCHERNTHANER, G
    MAYR, WR
    BOGNER, U
    KOTULLA, P
    SCHLEUSENER, H
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 1982, 12 (02) : 11 - 11
  • [49] GENETIC-HETEROGENEITY IN GAUCHER DISEASE
    ZLOTOGORA, J
    ZAIZOV, R
    KLIBANSKY, C
    MATOTH, Y
    BACH, G
    COHEN, T
    CLINICAL GENETICS, 1983, 24 (04) : 299 - 299
  • [50] Genetic and clinical heterogeneity of ferroportin disease
    Cemonesi, L
    Forni, GL
    Soriani, N
    Lamagna, M
    Fermo, I
    Daraio, F
    Galli, A
    Pietra, D
    Malcovati, L
    Ferrari, M
    Camaschella, C
    Cazzola, M
    BRITISH JOURNAL OF HAEMATOLOGY, 2005, 131 (05) : 663 - 670