Toeplitz operators between Bergman–Orlicz spaces

被引:0
|
作者
Min Dong
Yongjiang Duan
Siyu Wang
机构
[1] Northeast Normal University,School of Mathematics and Statistics
来源
关键词
Toeplitz operator; Bergman–Orlicz spaces; Carleson measures; Berezin transform; 47B35; 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive Borel measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document}, let Kzα(w)=1(1-z¯w)2+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^\alpha _z(w)=\frac{1}{(1-\overline{z}w)^{2+\alpha }}$$\end{document} be the reproducing kernel of Aα2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha ^2({\mathbb {D}})$$\end{document} at z. The Toeplitz operators with symbol μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} are densely defined as follows: Tμ(f)(z)=∫Df(w)Kzα(w)¯dμ(w),f∈H∞(D).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_\mu (f)(z)= \int _{{\mathbb {D}}}f(w)\overline{K^\alpha _z(w)}{\text {d}}\mu (w),~f\in H^\infty ({\mathbb {D}}). \end{aligned}$$\end{document}Using the tools such as Carleson measures, Berezin transform and the average functions, we characterize the boundedness and compactness of Toeplitz operators Tμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mu $$\end{document} acting between two different Bergman–Orlicz spaces AαΦ1(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha ^{\Phi _1}({\mathbb {D}})$$\end{document} and AαΦ2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha ^{\Phi _2}({\mathbb {D}})$$\end{document} for two convex growth functions Φ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _1$$\end{document} and Φ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] On Berezin type operators and Toeplitz operators on Bergman spaces
    Gabriel T. Prǎjiturǎ
    Ruhan Zhao
    Lifang Zhou
    Banach Journal of Mathematical Analysis, 2023, 17
  • [22] On Berezin type operators and Toeplitz operators on Bergman spaces
    Prajitura, Gabriel T.
    Zhao, Ruhan
    Zhou, Lifang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
  • [23] HYPONORMAL TOEPLITZ OPERATORS ON THE WEIGHTED BERGMAN SPACES
    Hwang, In Sung
    Lee, Jongrak
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (02): : 323 - 330
  • [24] Toeplitz operators on Bergman spaces with variable exponents
    Shen, Conghui
    Li, Songxiao
    Long, Sujuan
    GEORGIAN MATHEMATICAL JOURNAL, 2025,
  • [25] Commuting of Toeplitz operators on the Bergman spaces of the bidisc
    Lu, YF
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (02) : 345 - 351
  • [26] Toeplitz operators on Bergman spaces with exponential weights
    Zhang, Yiyuan
    Wang, Xiaofeng
    Hu, Zhangjian
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (06) : 974 - 1007
  • [27] Toeplitz operators on Bergman spaces and Hardy multipliers
    Lusky, Wolfgang
    Taskinen, Jari
    STUDIA MATHEMATICA, 2011, 204 (02) : 137 - 154
  • [28] TOEPLITZ-OPERATORS ON WEIGHTED BERGMAN SPACES
    ELIAS, N
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (03) : 310 - 331
  • [29] Weak BMO and Toeplitz operators on Bergman spaces
    Taskinen, Jari
    Virtanen, Jani A.
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 773 - 790
  • [30] SOME TOEPLITZ OPERATORS ON WEIGHTED BERGMAN SPACES
    Kang, Si Ho
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (01) : 141 - 149