Toeplitz operators between Bergman–Orlicz spaces

被引:0
|
作者
Min Dong
Yongjiang Duan
Siyu Wang
机构
[1] Northeast Normal University,School of Mathematics and Statistics
来源
关键词
Toeplitz operator; Bergman–Orlicz spaces; Carleson measures; Berezin transform; 47B35; 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive Borel measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document}, let Kzα(w)=1(1-z¯w)2+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^\alpha _z(w)=\frac{1}{(1-\overline{z}w)^{2+\alpha }}$$\end{document} be the reproducing kernel of Aα2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha ^2({\mathbb {D}})$$\end{document} at z. The Toeplitz operators with symbol μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} are densely defined as follows: Tμ(f)(z)=∫Df(w)Kzα(w)¯dμ(w),f∈H∞(D).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_\mu (f)(z)= \int _{{\mathbb {D}}}f(w)\overline{K^\alpha _z(w)}{\text {d}}\mu (w),~f\in H^\infty ({\mathbb {D}}). \end{aligned}$$\end{document}Using the tools such as Carleson measures, Berezin transform and the average functions, we characterize the boundedness and compactness of Toeplitz operators Tμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mu $$\end{document} acting between two different Bergman–Orlicz spaces AαΦ1(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha ^{\Phi _1}({\mathbb {D}})$$\end{document} and AαΦ2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha ^{\Phi _2}({\mathbb {D}})$$\end{document} for two convex growth functions Φ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _1$$\end{document} and Φ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _2$$\end{document}.
引用
收藏
相关论文
共 50 条