Design and analysis of lower limb exoskeleton with external payload

被引:0
|
作者
S. Arunkumar
S. Mahesh
M. Rahul
N. Ganesh
K. J. Maheshwaran
机构
[1] Amrita Vishwa Vidyapeetham,Department of Mechanical Engineering
关键词
Exoskeleton; Bionic boot; Gait cycle; Design; Sustainability;
D O I
暂无
中图分类号
学科分类号
摘要
The lower limb exoskeletons are mainly used in the field of medical assistance for gait rehabilitation and military for maximizing user’s strength and endurance. This work is inspired by the work of “Bionic Boot”, invented by Keahi Seymour that enables to run faster with ostrich back-leg framework. The leg structure of ostrich can store double the elastic energy per step than human, due to their long elastic tendons. The existing Bionic Boot design aids in gaining speed while running without any external payloads. The objective of this work is to design and analyse lower limb exoskeleton that can carry external payload by reducing the consumption of metabolic energy during the motion. The entire mechanical structure of exoskeleton is designed in SolidWorks 3D modeling platform using three materials: aluminium alloy, stainless steel and titanium alloy. Finite element analysis of the design is performed in the same modeling package simulating the human running gait cycle for different phases to examine the stability of the structure. The deformations in aluminium and titanium alloy were larger by 66% and 40% than stainless steel respectively. However, in terms of maximum stress, stainless steel and titanium alloy experienced respectively 3.8% and 1.3% higher compared to aluminium alloy. The design is further analysed for sustainability with a view of minimizing its impact on the environment. The environmental impact parameters indicated that, stainless steel had minimal impact on the environment compared to aluminium and titanium alloy. Thus, these type of exoskeletons can reduce the dependence on the fossil-fuel powered vehicles, thereby reducing environmental pollution.
引用
收藏
页码:2055 / 2072
页数:17
相关论文
共 50 条
  • [21] Design and Evaluation of a Modular Lower Limb Exoskeleton for Rehabilitation
    dos Santos, Wilian M.
    Nogueira, Samuel L.
    de Oliveira, Gustavo C.
    Pena, Guido G.
    Siqueira, Adriano A. G.
    2017 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2017, : 447 - 451
  • [22] Design and control of hybrid actuation lower limb exoskeleton
    Aguilar-Sierra, Hipolito
    Yu, Wen
    Salazar, Sergio
    Lopez, Ricardo
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (06) : 1 - 13
  • [23] Flexible Design of a Wearable Lower Limb Exoskeleton Robot
    Chen, Chunjie
    Zheng, Duan
    Peng, Ansi
    Wang, Can
    Wu, Xinyu
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 209 - 214
  • [24] Design and Structural Evaluation of a Lower Limb Passive Exoskeleton
    Hasan, Meraj
    Shakeel, Syed S.
    Malik, Fahad M.
    Khalid, Arslan
    Mir, Ahsan K.
    Ahmed, Salman
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS, AND CONTROL TECHNOLOGY (I4CT), 2015,
  • [25] Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton
    Di Natali, Christian
    Poliero, Tommaso
    Sposito, Matteo
    Graf, Eveline
    Bauer, Christoph
    Pauli, Carole
    Bottenberg, Eliza
    De Eyto, Adam
    O'Sullivan, Leonard
    Hidalgo, Andres
    Scherly, Daniel
    Stadler, Konrad S.
    Caldwell, Darwin G.
    Ortiz, Jesus
    ROBOTICA, 2019, 37 (12) : 2014 - 2034
  • [26] Mechanical Design and Optimization on Lower Limb Exoskeleton for Rehabilitation
    Wang, Jianhua
    Pang, Yuchong
    Chang, Xin
    Chen, Weihai
    Zhang, Jianbin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 137 - 142
  • [27] Design and Control of an Exoskeleton in Rehabilitation Tasks for Lower Limb
    Velandia, Cristian
    Celedon, Hugo
    Tibaduiza, Diego Alexander
    Torres-Pinzon, Carlos
    Vitola, Jaime
    2016 XXI SYMPOSIUM ON SIGNAL PROCESSING, IMAGES AND ARTIFICIAL VISION (STSIVA), 2016,
  • [28] Pediatric Robotic Lower-Limb Exoskeleton: An Innovative Design and Kinematic Analysis
    Sarajchi, Mohammadhadi
    Sirlantzis, Konstantinos
    IEEE ACCESS, 2023, 11 : 115219 - 115230
  • [29] Design and Development of a Powered Upper Limb Exoskeleton with High Payload Capacity for Industrial Operations
    Coruk, Sinan
    Yildirim, Mehmet C.
    Kansizoglu, A. Talha
    Dalgic, Oguzhan
    Ugurlu, Barkan
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON HUMAN-MACHINE SYSTEMS (ICHMS), 2020, : 308 - 311
  • [30] Design on Articular Motion & Servo Driving with Experimental Analysis for Lower Limb Exoskeleton Robot
    Wang B.
    Wang Y.
    Liang Y.
    Wang Z.
    Ji J.
    Xu D.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (23): : 55 - 66