Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus

被引:0
|
作者
Adalberto P. Bergamasco
Paulo L. Dattori da Silva
Rafael B. Gonzalez
Alexandre Kirilov
机构
[1] Universidade de São Paulo,Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação
[2] Universidade Federal do Paraná,Departamento de Matemática
关键词
Global solvability; Global hypoellipticity; Complex vector field; Periodic solutions; Primary 35A01; Secondary 58Jxx;
D O I
暂无
中图分类号
学科分类号
摘要
This work deals with global solvability and global hypoellipticity of complex vector fields of the form L=∂/∂t+ib1(t)∂/∂x1+ib2(t)∂/∂x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=\partial /\partial t+ib_1(t)\partial /\partial x_1+ib_2(t)\partial /\partial x_2$$\end{document}, defined on T3≃R3/2πZ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^3\simeq \mathbb {R}^{3}/2\pi \mathbb {Z}^{3}$$\end{document}, where both b1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_1$$\end{document} and b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_2$$\end{document} belong to C∞(T1;R).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^{\infty }(\mathbb {T}^1;\mathbb {R}).$$\end{document} The solvability and hypoellipticity depend on condition (P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P$$\end{document}) and also on Diophantine properties of the coefficients.
引用
收藏
页码:341 / 360
页数:19
相关论文
共 50 条