Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus

被引:0
|
作者
Adalberto P. Bergamasco
Paulo L. Dattori da Silva
Rafael B. Gonzalez
Alexandre Kirilov
机构
[1] Universidade de São Paulo,Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação
[2] Universidade Federal do Paraná,Departamento de Matemática
关键词
Global solvability; Global hypoellipticity; Complex vector field; Periodic solutions; Primary 35A01; Secondary 58Jxx;
D O I
暂无
中图分类号
学科分类号
摘要
This work deals with global solvability and global hypoellipticity of complex vector fields of the form L=∂/∂t+ib1(t)∂/∂x1+ib2(t)∂/∂x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=\partial /\partial t+ib_1(t)\partial /\partial x_1+ib_2(t)\partial /\partial x_2$$\end{document}, defined on T3≃R3/2πZ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^3\simeq \mathbb {R}^{3}/2\pi \mathbb {Z}^{3}$$\end{document}, where both b1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_1$$\end{document} and b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_2$$\end{document} belong to C∞(T1;R).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^{\infty }(\mathbb {T}^1;\mathbb {R}).$$\end{document} The solvability and hypoellipticity depend on condition (P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P$$\end{document}) and also on Diophantine properties of the coefficients.
引用
收藏
页码:341 / 360
页数:19
相关论文
共 50 条
  • [1] Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus
    Bergamasco, Adalberto P.
    Dattori da Silva, Paulo L.
    Gonzalez, Rafael B.
    Kirilov, Alexandre
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2015, 6 (03) : 341 - 360
  • [2] Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus
    Bergamasco, A. P.
    Dattori da Silva, P. L.
    Gonzalez, R. B.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (05) : 3500 - 3526
  • [3] GLOBAL HYPOELLIPTICITY, GLOBAL SOLVABILITY AND NORMAL FORM FOR A CLASS OF REAL VECTOR FIELDS ON A TORUS AND APPLICATION
    Petronilho, G.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) : 6337 - 6349
  • [4] Global solvability and global hypoellipticity of complex vector fields on surfaces
    Hounie, Jorge
    Zugliani, Giuliano
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 340 : 616 - 641
  • [5] Global Gevrey hypoellipticity on the torus for a class of systems of complex vector fields
    Arias Junior, Alexandre
    Kirilov, Alexandre
    de Medeira, Cleber
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) : 712 - 732
  • [6] Global solvability for a class of complex vector fields on the two-torus
    Bergamasco, AP
    Cordaro, PD
    Petronilho, G
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) : 785 - 819
  • [7] Global solvability for a special class of vector fields on the torus
    Bergamasco, Adalberto P.
    Da Silva, Paulo L. Dattori
    Recent Progress on Some Problems in Several Complex Variables and Partial Differential Equations, 2006, 400 : 11 - 20
  • [8] Global hypoellipticity and global solvability for vector fields on compact Lie groups
    Kirilov, Alexandre
    de Moraes, Wagner A. A.
    Ruzhansky, Michael
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (02)
  • [9] Global analytic, Gevrey and C8 hypoellipticity on the 3-torus
    Himonas, A. Alexandrou
    Petronilho, Gerson
    Carvalho dos Santos, L. A.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (2-3) : 265 - 282
  • [10] On the solvability and hypoellipticity of complex vector fields
    Treves, Francois
    GEOMETRIC ANALYSIS OF SEVERAL COMPLEX VARIABLES AND RELATED TOPICS, 2011, 550 : 173 - 196