Short cycles in repeated exponentiation modulo a prime

被引:0
|
作者
Lev Glebsky
Igor E. Shparlinski
机构
[1] Universidad Autónoma de San Luis Potosí,Instituto de Investigación en Comunicación Óptica
[2] Macquarie University,Department of Computing
来源
关键词
Discrete logarithm; Cycle; Dynamical system; 11A07; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Given a prime p, we consider the dynamical system generated by repeated exponentiations modulo p, that is, by the map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \mapsto f_g(u)}$$\end{document}, where fg(u) ≡ gu (mod p) and 0 ≤ fg(u) ≤ p − 1. This map is in particular used in a number of constructions of cryptographically secure pseudorandom generators. We obtain nontrivial upper bounds on the number of fixed points and short cycles in the above dynamical system.
引用
收藏
页码:35 / 42
页数:7
相关论文
共 50 条
  • [1] Short cycles in repeated exponentiation modulo a prime
    Glebsky, Lev
    Shparlinski, Igor E.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (01) : 35 - 42
  • [2] On the cycle structure of repeated exponentiation modulo a prime
    Chou, WS
    Shparlinski, IE
    [J]. JOURNAL OF NUMBER THEORY, 2004, 107 (02) : 345 - 356
  • [3] ON THE CYCLE STRUCTURE OF REPEATED EXPONENTIATION MODULO A PRIME POWER
    Sha, Min
    [J]. FIBONACCI QUARTERLY, 2011, 49 (04): : 340 - 347
  • [4] Correcting noisy exponentiation black-boxes modulo a prime
    Shparlinski, Igor E.
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (12) : 414 - 417
  • [5] On short Kloosterman sums modulo a prime
    Korolev, M. A.
    [J]. MATHEMATICAL NOTES, 2016, 100 (5-6) : 820 - 827
  • [6] On short Kloosterman sums modulo a prime
    M. A. Korolev
    [J]. Mathematical Notes, 2016, 100 : 820 - 827
  • [7] The theta cycles for modular forms modulo prime powers
    Kim, Jigu
    Lee, Yoonjin
    [J]. FORUM MATHEMATICUM, 2023, 35 (03) : 591 - 613
  • [8] The distribution of inverses modulo a prime in short intervals
    Gonek, SM
    Krishnaswami, GS
    Sondhi, VL
    [J]. ACTA ARITHMETICA, 2002, 102 (04) : 315 - 322
  • [9] The Prime Exponentiation of an Integer
    Hytonen, Tuomas
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (05): : 470 - 470
  • [10] Unification modulo a partial theory of exponentiation
    Kapur, Deepak
    Marshall, Andrew
    Narendran, Paliath
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (42): : 12 - 23