Hyperbolic Wavelet Approximation

被引:0
|
作者
R. A. DeVore
S. V. Konyagin
V. N. Temlyakov
机构
[1] Department of Mathematics University of South Carolina Columbia SC 29208 USA,
[2] Department OPU,undefined
[3] Mech.-Math. Moscow State University Leninskie Gory Moscow 117234 Russia,undefined
[4] Department of Mathematics University of South Carolina Columbia SC 29208 USA,undefined
来源
关键词
Key words. Hyperbolic wavelets,Multivariate wavelets,Interpolation spaces.; .AMS Classification.; 41A63; 46C99.; <lsiheader>; <onlinepub>8 May,1998 ; <editor>Editors-in-Chief:; &lsilt;a href=../edboard.html#chiefs&lsigt;R.A. DeVore; E.B.Saff&lsilt;/a&lsigt; <pdfname>14n1p1.; pdf <pdfexist>yes <htmlexist>no <htmlfexist>no <texexist>yes <sectionname> </lsiheader>;
D O I
暂无
中图分类号
学科分类号
摘要
We study the multivariate approximation by certain partial sums (hyperbolic wavelet sums) of wavelet bases formed by tensor products of univariate wavelets. We characterize spaces of functions which have a prescribed approximation error by hyperbolic wavelet sums in terms of a K -functional and interpolation spaces. The results parallel those for hyperbolic trigonometric cross approximation of periodic functions [DPT].
引用
收藏
页码:1 / 26
页数:25
相关论文
共 50 条
  • [31] Approximation properties of fine hyperbolic graphs
    BENYIN FU
    Proceedings - Mathematical Sciences, 2016, 126 : 227 - 234
  • [32] Advances in the Approximation of the Matrix Hyperbolic Tangent
    Ibanez, Javier
    Alonso, Jose M.
    Sastre, Jorge
    Defez, Emilio
    Alonso-Jorda, Pedro
    MATHEMATICS, 2021, 9 (11)
  • [33] Hyperbolic cross approximation in infinite dimensions
    Dung, Dinh
    Griebel, Michael
    JOURNAL OF COMPLEXITY, 2016, 33 : 55 - 88
  • [34] Born approximation and sequence for hyperbolic equations
    Lin, Ching-Lung
    Lin, Liren
    Nakamura, Gen
    ASYMPTOTIC ANALYSIS, 2021, 121 (02) : 101 - 123
  • [35] Classical and hyperbolic approximation of hysteresis loops
    Wlodarski, Zdzislaw
    PHYSICA B-CONDENSED MATTER, 2007, 389 (02) : 347 - 350
  • [36] Appendix: Diophantine approximation on hyperbolic surfaces
    Parkkonen, J
    Paulin, F
    RIGIDITY IN DYNAMICS AND GEOMETRY: CONTRIBUTIONS FROM THE PROGRAMME ERGODIC THEORY, GEOMETRIC RIGIDITY AND NUMBER THEORY, 2002, : 227 - 236
  • [37] Lectures on Hyperbolic Equations and Their Numerical Approximation
    Toro, Eleuterio F.
    NON-NEWTONIAN FLUID MECHANICS AND COMPLEX FLOWS, 2018, 2212 : 91 - 169
  • [38] YOSIDA APPROXIMATION AND NONLINEAR HYPERBOLIC EQUATION
    IKEHATA, R
    OKAZAWA, N
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (05) : 479 - 495
  • [39] DIOPHANTINE APPROXIMATION ON HYPERBOLIC RIEMANN SURFACES
    HAAS, A
    ACTA MATHEMATICA, 1986, 156 (1-2) : 33 - 82
  • [40] Approximation properties of fine hyperbolic graphs
    Fu, Benyin
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 227 - 234