Hyperbolic Wavelet Approximation

被引:0
|
作者
R. A. DeVore
S. V. Konyagin
V. N. Temlyakov
机构
[1] Department of Mathematics University of South Carolina Columbia SC 29208 USA,
[2] Department OPU,undefined
[3] Mech.-Math. Moscow State University Leninskie Gory Moscow 117234 Russia,undefined
[4] Department of Mathematics University of South Carolina Columbia SC 29208 USA,undefined
来源
关键词
Key words. Hyperbolic wavelets,Multivariate wavelets,Interpolation spaces.; .AMS Classification.; 41A63; 46C99.; <lsiheader>; <onlinepub>8 May,1998 ; <editor>Editors-in-Chief:; &lsilt;a href=../edboard.html#chiefs&lsigt;R.A. DeVore; E.B.Saff&lsilt;/a&lsigt; <pdfname>14n1p1.; pdf <pdfexist>yes <htmlexist>no <htmlfexist>no <texexist>yes <sectionname> </lsiheader>;
D O I
暂无
中图分类号
学科分类号
摘要
We study the multivariate approximation by certain partial sums (hyperbolic wavelet sums) of wavelet bases formed by tensor products of univariate wavelets. We characterize spaces of functions which have a prescribed approximation error by hyperbolic wavelet sums in terms of a K -functional and interpolation spaces. The results parallel those for hyperbolic trigonometric cross approximation of periodic functions [DPT].
引用
收藏
页码:1 / 26
页数:25
相关论文
共 50 条
  • [1] Hyperbolic wavelet approximation
    DeVore, RA
    Konyagin, SV
    Temlyakov, VN
    CONSTRUCTIVE APPROXIMATION, 1998, 14 (01) : 1 - 26
  • [2] Hyperbolic Cross Approximation with respect to Wavelet System with Compact Supports
    Balgimbayeva, Sholpan A.
    INTERNATIONAL CONFERENCE FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS (FAIA2017), 2017, 1880
  • [3] Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes
    Luo, HJ
    Kolb, D
    Flad, HJ
    Hackbusch, W
    Koprucki, T
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (08): : 3625 - 3638
  • [4] Hyperbolic wavelet family
    Le, KN
    Dabke, KP
    Egan, GK
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (11): : 4678 - 4693
  • [5] The hyperbolic wavelet function
    Le, KN
    Dabke, KP
    Egan, GK
    WAVELET APPLICATIONS VIII, 2001, 4391 : 411 - 422
  • [6] On Approximation by Hyperbolic Splines
    Kulikov E.K.
    Makarov A.A.
    Journal of Mathematical Sciences, 2019, 240 (6) : 822 - 832
  • [7] Wavelet packet approximation
    Khanna, Nikhil
    Kumar, Varinder
    Kaushik, S. K.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (09) : 698 - 714
  • [8] An Approximation of Stochastic Hyperbolic Equations
    Ashyralyev, Allaberen
    Akat, Muzaffer
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [9] DIOPHANTINE APPROXIMATION ON HYPERBOLIC ORBIFOLDS
    HAAS, A
    DUKE MATHEMATICAL JOURNAL, 1988, 56 (03) : 531 - 547
  • [10] MATHEMATICAL APPROXIMATION OF THE HYPERBOLIC TANGENT
    Dhieb, Mohamed
    Lahiani, Mongi
    Ghariani, Hamadi
    2009 6TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES, VOLS 1 AND 2, 2009, : 929 - 934