On Non-Congruence Subgroups of the Analogue of the Modular Group in Characteristic p

被引:0
|
作者
A.W. Mason
机构
[1] University of Glasgow,Department of Mathematics
[2] Glasgow,undefined
来源
The Ramanujan Journal | 2003年 / 7卷
关键词
Special linear group; polynomial ring; non-congruence subgroup; minimal index;
D O I
暂无
中图分类号
学科分类号
摘要
Let k[t] be the polynomial ring over a finite field k. The group SL2(k[t]) is often referred to as the analogue, in characteristic p, of the classical modular group SL2(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}$$ \end{document}), where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}$$ \end{document} is the ring of rational integers. It is well-known that the smallest index of a non-congruence subgroup of SL2(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}$$ \end{document}) is 7. Here we compute this index for SL2(k[t]). (In all but 6 cases it turns out to be 1 + q, where q is the order of k.)
引用
收藏
页码:141 / 144
页数:3
相关论文
共 50 条