Efficient image dataset classification difficulty estimation for predicting deep-learning accuracy

被引:0
|
作者
Florian Scheidegger
Roxana Istrate
Giovanni Mariani
Luca Benini
Costas Bekas
Cristiano Malossi
机构
[1] ETH Zürich,
[2] IBM Research - Zürich,undefined
[3] Queen’s University of Belfast,undefined
[4] Università di Bologna,undefined
来源
The Visual Computer | 2021年 / 37卷
关键词
Dataset characterization; Classification difficulty; Deep learning; Image classification;
D O I
暂无
中图分类号
学科分类号
摘要
In the deep-learning community, new algorithms are published at a very fast pace. Therefore, solving an image classification problem for new datasets becomes a challenging task, as it requires to re-evaluate published algorithms and their different configurations in order to find a close to optimal classifier. To facilitate this process, before biasing our decision toward a class of neural networks or running an expensive search over the network space, we propose to estimate the classification difficulty of the dataset. Our method computes a single number that characterizes the dataset difficulty 97×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$97\times $$\end{document} faster than training state-of-the-art networks. The proposed method can be used in combination with network topology and hyper-parameter search optimizers to efficiently drive the search toward promising neural network configurations.
引用
收藏
页码:1593 / 1610
页数:17
相关论文
共 50 条
  • [31] DeepLearnMOR: a deep-learning framework for fluorescence image-based classification of organelle morphology
    Li, Jiying
    Peng, Jinghao
    Jiang, Xiaotong
    Rea, Anne C.
    Peng, Jiajie
    Hu, Jianping
    PLANT PHYSIOLOGY, 2021, 186 (04) : 1786 - 1799
  • [32] Efficient Deep Learning of Nonlocal Features for Hyperspectral Image Classification
    Shen, Yu
    Zhu, Sijie
    Chen, Chen
    Du, Qian
    Xiao, Liang
    Chen, Jianyu
    Pan, Delu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 6029 - 6043
  • [33] Deep-Learning Based Estimation of Dielectrophoretic Force
    Ajala, Sunday
    Jalajamony, Harikrishnan Muraleedharan
    Fernandez, Renny Edwin
    MICROMACHINES, 2022, 13 (01)
  • [34] Quantifying the Impact of Watermarking on Deep Learning Accuracy in Medical Image Classification
    Mohammed, Ahmed A.
    Awad, Sohaib R.
    Abdullah, Mohammed A. M.
    Elbasi, Ersin
    Woo, Wai L.
    IEEE ACCESS, 2024, 12 : 162040 - 162061
  • [35] How efficient deep-learning object detectors are?
    Miguel Soria, Luis
    Ortega, Francisco J.
    Alvarez-Garcia, Juan A.
    Velasco, Francisco
    Fernandez-Cerero, Damian
    NEUROCOMPUTING, 2020, 385 : 231 - 257
  • [36] Deep-learning pipeline for object pose estimation from an rgb-d image
    No Y.C.
    Kim Y.
    Kim D.
    Han H.-G.
    Song Y.-K.
    Kim D.
    Journal of Institute of Control, Robotics and Systems, 2021, 27 (08) : 593 - 601
  • [37] Representation learning with deep extreme learning machines for efficient image set classification
    Muhammad Uzair
    Faisal Shafait
    Bernard Ghanem
    Ajmal Mian
    Neural Computing and Applications, 2018, 30 : 1211 - 1223
  • [38] Representation learning with deep extreme learning machines for efficient image set classification
    Uzair, Muhammad
    Shafait, Faisal
    Ghanem, Bernard
    Mian, Ajmal
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (04): : 1211 - 1223
  • [39] Predicting progression to AD using a deep-learning model
    Kelsey R.
    Nature Reviews Neurology, 2019, 15 (9) : 492 - 492
  • [40] Developing a microscope image dataset for fungal spore classification in grapevine using deep learning
    Crespo-Michel, Alexis
    Alonso-Arevalo, Miguel A.
    Hernandez-Martinez, Rufina
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2023, 14