A damped semismooth Newton method for the Brugnano–Casulli piecewise linear system

被引:0
|
作者
Zhe Sun
Lei Wu
Zhe Liu
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
来源
BIT Numerical Mathematics | 2015年 / 55卷
关键词
Piecewise linear system; Semismooth Newton method; Monotone convergence; 65H10; 49M15; 76S05;
D O I
暂无
中图分类号
学科分类号
摘要
The piecewise linear system is a nonsmooth but semismooth equation. In this paper, a damped semismooth Newton method is presented for solving a class of piecewise linear systems. Under appropriate conditions, both monotone convergence and finite termination properties are investigated for the proposed method.
引用
下载
收藏
页码:569 / 589
页数:20
相关论文
共 50 条
  • [1] A damped semismooth Newton method for the Brugnano-Casulli piecewise linear system
    Sun, Zhe
    Wu, Lei
    Liu, Zhe
    BIT NUMERICAL MATHEMATICS, 2015, 55 (02) : 569 - 589
  • [2] DC programming and DCA for solving Brugnano-Casulli piecewise linear systems
    Tao Pham Dinh
    Vinh Thanh Ho
    Hoai An Le Thi
    COMPUTERS & OPERATIONS RESEARCH, 2017, 87 : 196 - 204
  • [3] A damped semismooth Newton method for mixed linear complementarity problems
    Sun, Zhe
    Zeng, Jinping
    OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (02): : 187 - 205
  • [4] A damped semismooth Newton iterative method for solving mixed linear complementarity problems
    Wu, Lei
    Sun, Zhe
    Zeng, Jinping
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (06): : 951 - 967
  • [5] A Semismooth Newton Method for Adaptive Distributed Sparse Linear Regression
    Shutin, Dmitriy
    Vexler, Boris
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 433 - 436
  • [6] Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems
    G. L. Zhou
    L. Caccetta
    Journal of Optimization Theory and Applications, 2008, 139
  • [7] Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems
    Zhou, G. L.
    Caccetta, L.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 139 (02) : 379 - 392
  • [8] ON NEWTON'S METHOD FOR SEMISMOOTH EQUATIONS
    Argyros, I. K.
    Gonzalez, D.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [9] A nonmonotone semismooth inexact Newton method
    Bonettini, Silvia
    Tinti, Federica
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04): : 637 - 657
  • [10] A semismooth Newton method for topology optimization
    Amstutz, Samuel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) : 1585 - 1595