Unified treatment of null and spatial infinity IV: angular momentum at null and spatial infinity

被引:0
|
作者
Abhay Ashtekar
Neev Khera
机构
[1] Penn State,Institute for Gravitation and the Cosmos & Physics Department
[2] Perimeter Institute for Theoretical Physics,Physics Department
[3] University of Guelph,undefined
关键词
Classical Theories of Gravity; Differential and Algebraic Geometry; Space-Time Symmetries; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
In a companion paper [1] we introduced the notion of asymptotically Minkowski spacetimes. These space-times are asymptotically flat at both null and spatial infinity, and furthermore there is a harmonious matching of limits of certain fields as one approaches i° in null and space-like directions. These matching conditions are quite weak but suffice to reduce the asymptotic symmetry group to a Poincaré group pi°\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{p}}_{i{}^{\circ}} $$\end{document}. Restriction of pi°\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{p}}_{i{}^{\circ}} $$\end{document} to future null infinity I+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{I}}^{+} $$\end{document} yields the canonical Poincaré subgroup pi°bms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{p}}_{i{}^{\circ}}^{\textrm{bms}} $$\end{document} of the BMS group B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{B} $$\end{document} selected in [2, 3] and that its restriction to spatial infinity i°, the canonical subgroup pi°spi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{p}}_{i{}^{\circ}}^{\textrm{spi}} $$\end{document} of the Spi group S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{S} $$\end{document} selected in [4, 5]. As a result, one can meaningfully compare angular momentum that has been defined at i° using pi°spi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{p}}_{i{}^{\circ}}^{\textrm{spi}} $$\end{document} with that defined on I+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{I}}^{+} $$\end{document} using pi°bms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{p}}_{i{}^{\circ}}^{\textrm{bms}} $$\end{document}. We show that the angular momentum charge at i° equals the sum of the angular momentum charge at any 2-sphere cross-section S of I+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{I}}^{+} $$\end{document} and the total flux of angular momentum radiated across the portion of I+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{I}}^{+} $$\end{document} to the past of S. In general the balance law holds only when angular momentum refers to SO(3) subgroups of the Poincaré group pi°\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{p}}_{i{}^{\circ}} $$\end{document}.
引用
收藏
相关论文
共 50 条