Combat with Class Overlapping in Software Defect Prediction Using Neighbourhood Metric

被引:0
|
作者
Gupta S. [1 ]
Richa [2 ]
Kumar R. [3 ,4 ]
Jain K.L. [3 ,4 ]
机构
[1] School of Computer Science Engineering, Vellore Institute of Technology, Chennai
[2] Department of Computer science and Engineering, Birla Institute of Technology, Mesra, Ranchi
[3] School of Electronics Engineering, Vellore Institute of Technology, Chennai
[4] School of Computer & Communication Engineering, Manipal University Jaipur, Jaipur
关键词
AUC; Class imbalance; Class overlap; G-mean; Recall; Software defect prediction;
D O I
10.1007/s42979-023-02082-8
中图分类号
学科分类号
摘要
The characteristics of data is a open problem which has been tended perceived in data analysis in machine learning research from last decades. The researcher defined some measures to identify the characteristics of the dataset by applying data complexity measures to find the fitness for purpose. The presence of class overlapping in data-sets, significantly affect performance of the classifiers. Data complexity measures provide quantitative insight in quality of the data set and overlapping existent in it. Machine learning techniques are also utilized by several researchers on healthcare datasets in software defect prediction. In this paper, our aim is to evaluates the effectiveness of new overlap measure: Near Enemy Ratio, and its effect on complexity measures and performance of the classifier. The new ration is based on nearest instances to the target instance. The experimental result offers insights in usefulness of the method and help us decide whether this solution should be applied on a particular data-set or not. © 2023, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 50 条
  • [21] SOFTWARE DEFECT PREDICTION: ANALYSIS OF CLASS IMBALANCE AND PERFORMANCE STABILITY
    Balogun, Abdullateef O.
    Basri, Shuib
    Abdulkadir, Said J.
    Adeyemo, Victor E.
    Imam, Abdullahi A.
    Bajeh, Amos O.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2019, 14 (06): : 3294 - 3308
  • [23] On Software Defect Prediction Using Machine Learning
    Ren, Jinsheng
    Qin, Ke
    Ma, Ying
    Luo, Guangchun
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [24] Software Defect Prediction using Hybrid Approach
    Thant, Myo Wai
    Aung, Nyein Thwet Thwet
    2019 INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION TECHNOLOGIES (ICAIT), 2019, : 262 - 267
  • [25] Software defect prediction using Bayesian networks
    Ahmet Okutan
    Olcay Taner Yıldız
    Empirical Software Engineering, 2014, 19 : 154 - 181
  • [26] Software Defect Prediction using Deep Learning
    Nevendra, Meetesh
    Singh, Pradeep
    ACTA POLYTECHNICA HUNGARICA, 2021, 18 (10) : 173 - 189
  • [27] Software defect prediction using Bayesian networks
    Okutan, Ahmet
    Yildiz, Olcay Taner
    EMPIRICAL SOFTWARE ENGINEERING, 2014, 19 (01) : 154 - 181
  • [28] Software Defect Prediction Using Neural Networks
    Jindal, Rajni
    Malhotra, Ruchika
    Jain, Abha
    2014 3RD INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (ICRITO) (TRENDS AND FUTURE DIRECTIONS), 2014,
  • [29] Causally Remove Negative Confound Effects of Size Metric for Software Defect Prediction
    Li, Chenlong
    Yuan, Yuyu
    Yang, Jincui
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [30] The Impact Study of Class Imbalance on the Performance of Software Defect Prediction Models
    Yu Q.
    Jiang S.-J.
    Zhang Y.-M.
    Wang X.-Y.
    Gao P.-F.
    Qian J.-Y.
    Qian, Jun-Yan (qjy2000@gmail.com), 2018, Science Press (41): : 809 - 824