Construction of New Fractal Interpolation Functions Through Integration Method

被引:0
|
作者
A. Agathiyan
A. Gowrisankar
T. M. C. Priyanka
机构
[1] Vellore Institute of Technology,Department of Mathematics, School of Advanced Sciences
来源
Results in Mathematics | 2022年 / 77卷
关键词
Fractal interpolation functions; classical integral; function scaling factors; 28A80; 41A05; 97I50;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the classical integral of various types of fractal interpolation functions namely linear fractal interpolation function, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-fractal function and hidden variable fractal interpolation function with function scaling factors. The integral of a fractal function is again a fractal function to a different set of interpolation data if the integral of fractal function is predefined at the initial point or end point of the given data. In this study, the selection of vertical scaling factors as continuous functions on the closed interval of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} provides more diverse fractal interpolation functions compared to the fractal interpolations functions with constant scaling factors.
引用
收藏
相关论文
共 50 条
  • [21] On a Class of Fractal Interpolation Functions
    Qian Xiaoyuan (Inst. of Math. Scis.
    [J]. Journal of Mathematical Research with Applications, 1997, (02) : 46 - 47
  • [22] THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS
    BARNSLEY, MF
    HARRINGTON, AN
    [J]. JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) : 14 - 34
  • [23] Construction of fractal surfaces by recurrent fractal interpolation curves
    Yun, Chol-hui
    O, Hyong-chol
    Choi, Hui-chol
    [J]. CHAOS SOLITONS & FRACTALS, 2014, 66 : 136 - 143
  • [24] A Concretization of an Approximation Method for Non-Affine Fractal Interpolation Functions
    Baicoianu, Alexandra
    Pacurar, Cristina Maria
    Paun, Marius
    [J]. MATHEMATICS, 2021, 9 (07)
  • [25] Construction and application of fractal interpolation surfaces
    Zhao, NL
    [J]. VISUAL COMPUTER, 1996, 12 (03): : 132 - 146
  • [26] Univariable affine fractal interpolation functions
    V. Drakopoulos
    N. Vijender
    [J]. Theoretical and Mathematical Physics, 2021, 207 : 689 - 700
  • [27] Affine recurrent fractal interpolation functions
    N. Balasubramani
    A. Gowrisankar
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3765 - 3779
  • [28] The construction of biorthogonal multi-scaling functions possessing higher approximation order with fractal interpolation functions
    Zhang, B
    Wang, JF
    Song, GX
    [J]. WAVELET ANALYSIS AND ITS APPLICATIONS (WAA), VOLS 1 AND 2, 2003, : 665 - 669
  • [29] A NEW METHOD OF INTERPOLATION AND NUMERICAL-INTEGRATION
    CATSAROS, N
    RIBON, P
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1987, 43 (03) : 339 - 346
  • [30] Generalization of Hermite functions by fractal interpolation
    Navascués, MA
    Sebastián, MV
    [J]. JOURNAL OF APPROXIMATION THEORY, 2004, 131 (01) : 19 - 29