Assouad–Nagata dimension of connected Lie groups

被引:0
|
作者
J. Higes
I. Peng
机构
[1] TU Berlin,Institute of Mathematics, MA 6
[2] Indiana University,2
来源
Mathematische Zeitschrift | 2013年 / 273卷
关键词
Asymptotic dimension; Assouad–Nagata dimension; Polycyclic groups; Connected Lie groups; Primary 20F69; 22E25; Secondary 20F16;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the asymptotic Assouad–Nagata dimension of a connected Lie group G equipped with a left-invariant Riemannian metric coincides with its topological dimension of G/C where C is a maximal compact subgroup. To prove it we will compute the Assouad–Nagata dimension of connected solvable Lie groups and semisimple Lie groups. As a consequence we show that the asymptotic Assouad–Nagata dimension of a polycyclic group equipped with a word metric is equal to its Hirsch length and that some wreath-type finitely generated groups can not be quasi-isometrically embedded into any cocompact lattice on a connected Lie group.
引用
收藏
页码:283 / 302
页数:19
相关论文
共 50 条
  • [21] On Assouad dimension of products
    Peng, Fengji
    Wang, Wen
    Wen, Shengyou
    CHAOS SOLITONS & FRACTALS, 2017, 104 : 192 - 197
  • [22] RANK OF CONNECTED LIE GROUPS
    MOSKALEN.ZI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1974, (01): : 39 - 41
  • [23] CHARACTERS OF CONNECTED LIE GROUPS
    PUKANSZK.L
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (04) : 709 - 712
  • [24] CHARACTERS OF CONNECTED LIE GROUPS
    PUKANSZKY, L
    ACTA MATHEMATICA, 1974, 133 (1-2) : 81 - 137
  • [25] Connected Lie Groups Admitting an Embedding in a Connected Amenable Lie Group
    Shtern, A., I
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2019, 26 (04) : 499 - 500
  • [26] Connected Lie Groups Admitting an Embedding in a Connected Amenable Lie Group
    A. I. Shtern
    Russian Journal of Mathematical Physics, 2019, 26 : 499 - 500
  • [27] Conformal assouad dimension and modulus
    S. Keith
    T. Laakso
    Geometric & Functional Analysis GAFA, 2004, 14 : 1278 - 1321
  • [28] Pointwise Assouad dimension for measures
    Anttila, Roope
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (06) : 2053 - 2078
  • [29] Conformal Assouad dimension and modulus
    Keith, S
    Laakso, T
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (06) : 1278 - 1321
  • [30] THE ASSOUAD SPECTRUM AND THE QUASI-ASSOUAD DIMENSION: A TALE OF TWO SPECTRA
    Fraser, Jonathan M.
    Hare, Kathryn E.
    Hare, Kevin G.
    Troscheit, Sascha
    Yu, Han
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 379 - 387