Topology of non-negatively curved manifolds

被引:0
|
作者
Christine Escher
Wolfgang Ziller
机构
[1] Oregon State University,
[2] University of Pennsylvania,undefined
来源
关键词
Non-negative curvature; Sphere bundles; Eschenburg spaces; Kreck–Stolz invariants;
D O I
暂无
中图分类号
学科分类号
摘要
We study the topology of various sphere bundles over CP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CP}^{2}$$\end{document} which admit a metric with non-negative sectional curvature. We then compare their diffeomorphism types with known examples of positively curved manifolds, in particular Eschenburg spaces.
引用
收藏
页码:23 / 55
页数:32
相关论文
共 50 条
  • [31] Rigidity of flat sections on non-negatively curved pullback submersions
    C. Durán
    L. D. Sperança
    Manuscripta Mathematica, 2015, 147 : 511 - 525
  • [32] The First Width of Non-negatively Curved Surfaces with Convex Boundary
    Sidney Donato
    Rafael Montezuma
    The Journal of Geometric Analysis, 2024, 34
  • [33] Compact spacelike submanifolds in non-negatively curved pseudo-Riemannian space forms
    Aquib, Md
    Ciobanu, Alexandru
    Mihai, Adela
    Shabir, Furqan
    PERIODICA MATHEMATICA HUNGARICA, 2025,
  • [34] NEGATIVELY RICCI CURVED MANIFOLDS
    LOHKAMP, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (02) : 288 - 291
  • [35] Compactification on negatively curved manifolds
    Douglas, Michael R.
    Kallosh, Renata
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06):
  • [36] Compactification on negatively curved manifolds
    Michael R. Douglas
    Renata Kallosh
    Journal of High Energy Physics, 2010
  • [37] A CONSTRUCTION OF NEGATIVELY CURVED MANIFOLDS
    FUJIWARA, K
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (09) : 352 - 355
  • [38] Volume doubling, Poincare inequality and Gaussian heat kernel estimate for non-negatively curved graphs
    Horn, Paul
    Lin, Yong
    Liu, Shuang
    Yau, Shing-Tung
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 757 : 89 - 130
  • [39] Connections adapted to non-negatively graded structures
    Bruce, Andrew James
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (02)
  • [40] Graph manifolds as ends of negatively curved Riemannian manifolds
    Fujiwara, Koji
    Shioya, Takashi
    GEOMETRY & TOPOLOGY, 2020, 24 (04) : 2035 - 2074