The bi-objective multimodal car-sharing problem

被引:0
|
作者
Miriam Enzi
Sophie N. Parragh
Jakob Puchinger
机构
[1] Johannes Kepler University Linz, Institute of Production and Logistics Management
[2] AIT Austrian Institute of Technology,Center for Energy
[3] Université Paris-Saclay ,Laboratoire Génie Industriel, CentraleSupélec
[4] Institut de Recherche Technologique SystemX,undefined
来源
OR Spectrum | 2022年 / 44卷
关键词
Car-sharing; Mobility; Transportation; Bi-objective; Branch and cut;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the bi-objective multimodal car-sharing problem (BiO-MMCP) is to determine the optimal mode of transport assignment for trips and to schedule the routes of available cars and users whilst minimizing cost and maximizing user satisfaction. We investigate the BiO-MMCP from a user-centred point of view. As user satisfaction is a crucial aspect in shared mobility systems, we consider user preferences in a second objective. Users may choose and rank their preferred modes of transport for different times of the day. In this way, we account for, e.g., different traffic conditions throughout the planning horizon. We study different variants of the problem. In the base problem, the sequence of tasks a user has to fulfil is fixed in advance and travel times as well as preferences are constant over the planning horizon. In variant 2, time-dependent travel times and preferences are introduced. In variant 3, we examine the challenges when allowing additional routing decisions. Variant 4 integrates variants 2 and 3. For this last variant, we develop a branch-and-cut algorithm which is embedded in two bi-objective frameworks, namely the ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-constraint method and a weighting binary search method. Computational experiments show that the branch-and cut algorithm outperforms the MIP formulation and we discuss changing solutions along the Pareto frontier.
引用
下载
收藏
页码:307 / 348
页数:41
相关论文
共 50 条
  • [21] The bi-objective traveling purchaser problem with deliveries
    Palomo-Martinez, Pamela J.
    Angelica Salazar-Aguilar, M.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 273 (02) : 608 - 622
  • [22] A bi-objective study of the minimum latency problem
    Arellano-Arriaga, N. A.
    Molina, J.
    Schaeffer, S. E.
    Alvarez-Socarras, A. M.
    Martinez-Salazar, I. A.
    JOURNAL OF HEURISTICS, 2019, 25 (03) : 431 - 454
  • [23] Metaheuristics for the bi-objective ring star problem
    Liefooghe, Arnaud
    Jourdan, Laetitia
    Basseur, Matthieu
    Talbi, El-Ghazali
    Burke, Edmund K.
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2008, 4972 : 206 - +
  • [24] The bi-objective Pollution-Routing Problem
    Demir, Emrah
    Bektas, Tolga
    Laporte, Gilbert
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 232 (03) : 464 - 478
  • [25] A bi-objective study of the minimum latency problem
    N. A. Arellano-Arriaga
    J. Molina
    S. E. Schaeffer
    A. M. Álvarez-Socarrás
    I. A. Martínez-Salazar
    Journal of Heuristics, 2019, 25 : 431 - 454
  • [26] A bi-objective uncapacitated facility location problem
    Myung, YS
    Kim, HG
    Tcha, DW
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1997, 100 (03) : 608 - 616
  • [27] A study of the bi-objective next release problem
    Durillo, Juan J.
    Zhang, Yuanyuan
    Alba, Enrique
    Harman, Mark
    Nebro, Antonio J.
    EMPIRICAL SOFTWARE ENGINEERING, 2011, 16 (01) : 29 - 60
  • [28] The bi-objective stochastic covering tour problem
    Tricoire, Fabien
    Graf, Alexandra
    Gutjahr, Walter J.
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (07) : 1582 - 1592
  • [29] An exact algorithm for the bi-objective timing problem
    Sophie Jacquin
    Fanny Dufossé
    Laetitia Jourdan
    Optimization Letters, 2018, 12 : 903 - 914
  • [30] The bi-objective critical node detection problem
    Ventresca, Mario
    Harrison, Kyle Robert
    Ombuki-Berman, Beatrice M.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 265 (03) : 895 - 908