Supersymmetric Fibonacci polynomials

被引:0
|
作者
Hashim A. Yamani
机构
[1] Dar Al-Jewar,
[2] Knowledge Economic City,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It has long been recognized that Fibonacci-type recurrence relations can be used to define a set of versatile polynomials {pn(z)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ p_{n} (z)\}$$\end{document} that have Fibonacci numbers and Chebyshev polynomials as special cases. We show that a tridiagonal matrix, which can be factored into the product AB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AB$$\end{document} of two special matrices A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, is associated with these polynomials. We apply tools that have been developed to study the supersymmetry of Hamiltonians that have a tridiagonal matrix representation in a basis to derive a set of partner polynomials {pn(+)(z)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ p_{n}^{( + )} (z)\}$$\end{document} associated with the matrix product BA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BA$$\end{document}. We find that special cases of these polynomials share similar properties with the Fibonacci numbers and Chebyshev polynomials. As a result, we find two new sum rules that involve the Fibonacci numbers and their product with Chebyshev polynomials.
引用
收藏
相关论文
共 50 条