Statistical Mechanics of a Simplified Bipartite Matching Problem: An Analytical Treatment

被引:0
|
作者
Matías Germán dell’Erba
机构
[1] IFIMAR (CONICET-UNMdP),Instituto de Investigaciones en Física de Mar del Plata
[2] Universidad Nacional de Mar del Plata,Departamento de Física, Facultad de Ciencias Exactas y Naturales
来源
关键词
Statistical mechanics; Bipartite matching problem; Thermodynamic functions;
D O I
暂无
中图分类号
学科分类号
摘要
We perform an analytical study of a simplified bipartite matching problem in which there exists a constant matching energy, and both heterosexual and homosexual pairings are allowed. We obtain the partition function in a closed analytical form and we calculate the corresponding thermodynamic functions of this model. We conclude that the model is favored at high temperatures, for which the probabilities of heterosexual and homosexual pairs tend to become equal. In the limits of low and high temperatures, the system is extensive, however this property is lost in the general case. There exists a relation between the matching energies for which the system becomes more stable under external (thermal) perturbations. As the difference of energies between the two possible matches increases the system becomes more ordered, while the maximum of entropy is achieved when these energies are equal. In this limit, there is a first order phase transition between two phases with constant entropy.
引用
收藏
页码:1263 / 1273
页数:10
相关论文
共 50 条
  • [1] Statistical Mechanics of a Simplified Bipartite Matching Problem: An Analytical Treatment
    German dell'Erba, Matias
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 146 (06) : 1263 - 1273
  • [2] ASSOCIATION PROBLEM IN STATISTICAL MECHANICS - CRITIQUE OF THE TREATMENT
    FISHER, ME
    TEMPERLEY, HNV
    [J]. REVIEWS OF MODERN PHYSICS, 1960, 32 (04) : 1029 - 1031
  • [3] Online total bipartite matching problem
    Meghan Shanks
    Sheldon H. Jacobson
    [J]. Optimization Letters, 2022, 16 : 1411 - 1426
  • [4] Online total bipartite matching problem
    Shanks, Meghan
    Jacobson, Sheldon H.
    [J]. OPTIMIZATION LETTERS, 2022, 16 (05) : 1411 - 1426
  • [5] On the bipartite unique perfect matching problem
    Hoang, Thanh Minh
    Mahajan, Meena
    Thierauf, Thomas
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, 2006, 4051 : 453 - 464
  • [6] THE UNIQUELY SOLVABLE BIPARTITE MATCHING PROBLEM
    CECHLAROVA, K
    [J]. OPERATIONS RESEARCH LETTERS, 1991, 10 (04) : 221 - 224
  • [7] AN EXTENSION OF THE BIPARTITE WEIGHTED MATCHING PROBLEM
    HSIEH, AJ
    HO, CW
    FAN, KC
    [J]. PATTERN RECOGNITION LETTERS, 1995, 16 (04) : 347 - 353
  • [8] AN EFFICIENT ALGORITHM FOR THE BIPARTITE MATCHING PROBLEM
    CARRARESI, P
    SODINI, C
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1986, 23 (01) : 86 - 93
  • [9] Equilibrium statistical mechanics of bipartite spin systems
    Barra, Adriano
    Genovese, Giuseppe
    Guerra, Francesco
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (24)
  • [10] Statistical mechanics of bipartite z-matchings
    Kreacic, Eleonora
    Bianconi, Ginestra
    [J]. EPL, 2019, 126 (02)