Differential Equations Invariant Under Conditional Symmetries

被引:0
|
作者
Decio Levi
Miguel A. Rodríguez
Zora Thomova
机构
[1] Sezione Roma Tre,INFN
[2] Universidad Complutense de Madrid,Dept. de Física Teórica, Pza. de las Ciencias 1
[3] SUNY Polytechnic Institute,undefined
关键词
Lie symmetries; partial differential equations; conditional symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
Nonlinear PDE’s having given conditional symmetries are constructed. They are obtained starting from the invariants of the conditional symmetry generator and imposing the extra condition given by the characteristic of the symmetry. Series of examples starting from the Boussinesq and including non-autonomous Korteweg—de Vries like equations are given to show and clarify the methodology introduced.
引用
收藏
页码:281 / 293
页数:12
相关论文
共 50 条
  • [41] Moving coframes and symmetries of differential equations
    Morozov, O
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (12): : 2965 - 2977
  • [42] Symmetries of linear ordinary differential equations
    Athorne, C.
    Journal of Physics A: Mathematical and General, 30 (13):
  • [43] Symmetries and first integrals of differential equations
    Zhang, Jin
    Li, Yong
    ACTA APPLICANDAE MATHEMATICAE, 2008, 103 (02) : 147 - 159
  • [44] Symmetries of linear ordinary differential equations
    Athorne, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (13): : 4639 - 4649
  • [45] Symmetries of integro-differential equations
    Zawistowski, ZJ
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (1-2) : 269 - 276
  • [46] Determination of approximate symmetries of differential equations
    Bonasia, J
    Lemaire, F
    Reid, G
    Scott, R
    Zhi, LH
    GROUP THEORY AND NUMERICAL ANALYSIS, 2005, 39 : 249 - 266
  • [47] Determining discrete symmetries of differential equations
    Gaeta, G
    Rodriguez, MA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1996, 111 (07): : 879 - 891
  • [48] Projective transformations and symmetries of differential equations
    Aminova, AV
    SBORNIK MATHEMATICS, 1995, 186 (11-12) : 1711 - 1726
  • [49] ON THE SYMMETRIES OF SYSTEMS OF DIFFERENTIAL-EQUATIONS
    GONZALESGASCON, F
    GONZALESLOPEZ, A
    LETTERE AL NUOVO CIMENTO, 1981, 32 (13): : 353 - 360
  • [50] Classification of the symmetries of ordinary differential equations
    Krause, J.
    Michel, L.
    Lecture Notes in Physics, 1991, (382):