In this paper, the parameters optimization of plastic injection molding (PIM) process was obtained in systematic optimization methodologies by two stages. In the first stage, the parameters, such as melt temperature, injection velocity, packing pressure, packing time, and cooling time, were selected by simulation method in widely range. The simulation experiment was performed under Taguchi method, and the quality characteristics (product length and warpage) of PIM process were obtained by the computer aided engineering (CAE) method. Then, the Taguchi method was utilized for the simulation experiments and data analysis, followed by the S/N ratio method and ANOVA, which were used to identify the most significant process parameters for the initial optimal combinations. Therefore, the range of these parameters can be narrowed for the second stage by this analysis. The Taguchi orthogonal array table was also arranged in the second stage. And, the Taguchi method was utilized for the experiments and data analysis. The experimental data formed the basis for the RSM analysis via the multi regression models and combined with NSGS-II to determine the optimal process parameter combinations in compliance with multi-objective product quality characteristics and energy efficiency. The confirmation results show that the proposed model not only enhances the stability in the injection molding process, including the quality in product length deviation, but also reduces the product weight and energy consuming in the PIM process. It is an emerging trend that the multi-objective optimization of product length deviation and warpage, product weight, and energy efficiency should be emphasized for green manufacturing.