Dirichlet series with functional equations and arithmetical identities

被引:0
|
作者
Sister Ann M. Heath
机构
[1] Immaculata University,Department of Mathematics
来源
The Ramanujan Journal | 2016年 / 41卷
关键词
Hecke’s functional equation; Dirichlet series with functional equations; Bessel functions; Hypergeometric functions; Primary 11M41;
D O I
暂无
中图分类号
学科分类号
摘要
Exploiting the functional equation of Hecke-type associated with a function satisfying a modular relation with a residual function as developed in Bochner (J Indian Math Soc 16:99–102, 1952), Chandrasekharan and Narasimhan (Ann Math 74:1–23, 1961) derived the equivalence of the functional equation to two arithmetical identities. Hawkins and Knopp (Contemp Math 143:451–475, 1993) showed the equivalence of the functional equation to modular integrals with rational period functions of weight 2k, k∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in \mathbb {Z}^+$$\end{document} on the theta group Γϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _\vartheta $$\end{document}. The aim of the current work is to show that results analogous to those of Chandrasekharan and Narasimhan can be developed in the Hawkins and Knopp context, but with respect to the full modular group Γ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (1)$$\end{document}, rather than the theta group Γϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _\vartheta $$\end{document}.
引用
收藏
页码:115 / 146
页数:31
相关论文
共 50 条