Exploiting the functional equation of Hecke-type associated with a function satisfying a modular relation with a residual function as developed in Bochner (J Indian Math Soc 16:99–102, 1952), Chandrasekharan and Narasimhan (Ann Math 74:1–23, 1961) derived the equivalence of the functional equation to two arithmetical identities. Hawkins and Knopp (Contemp Math 143:451–475, 1993) showed the equivalence of the functional equation to modular integrals with rational period functions of weight 2k, k∈Z+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \in \mathbb {Z}^+$$\end{document} on the theta group Γϑ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma _\vartheta $$\end{document}. The aim of the current work is to show that results analogous to those of Chandrasekharan and Narasimhan can be developed in the Hawkins and Knopp context, but with respect to the full modular group Γ(1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma (1)$$\end{document}, rather than the theta group Γϑ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma _\vartheta $$\end{document}.