On the numerical stability of linear barycentric rational interpolation

被引:0
|
作者
Chiara Fuda
Rosanna Campagna
Kai Hormann
机构
[1] Università della Svizzera italiana,Faculty of Informatics
[2] Università degli studi della Campania,Dipartimento di Matematica e Fisica
来源
Numerische Mathematik | 2022年 / 152卷
关键词
65D05; 41A20; 65G50;
D O I
暂无
中图分类号
学科分类号
摘要
The barycentric forms of polynomial and rational interpolation have recently gained popularity, because they can be computed with simple, efficient, and numerically stable algorithms. In this paper, we show more generally that the evaluation of any function that can be expressed as r(x)=∑i=0nai(x)fi/∑j=0mbj(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r(x)=\sum _{i=0}^n a_i(x) f_i\big /\sum _{j=0}^m b_j(x)$$\end{document} in terms of data values fi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_i$$\end{document} and some functions ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_i$$\end{document} and bj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_j$$\end{document} for i=0,…,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=0,\ldots ,n$$\end{document} and j=0,⋯,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=0,\dots ,m$$\end{document} with a simple algorithm that first sums up the terms in the numerator and the denominator, followed by a final division, is forward and backward stable under certain assumptions. This result includes the two barycentric forms of rational interpolation as special cases. Our analysis further reveals that the stability of the second barycentric form depends on the Lebesgue constant associated with the interpolation nodes, which typically grows with n, whereas the stability of the first barycentric form depends on a similar, but different quantity, that can be bounded in terms of the mesh ratio, regardless of n. We support our theoretical results with numerical experiments.
引用
收藏
页码:761 / 786
页数:25
相关论文
共 50 条
  • [31] STABILITY OF BARYCENTRIC INTERPOLATION FORMULAS FOR EXTRAPOLATION
    Webb, Marcus
    Trefethen, Lloyd N.
    Gonnet, Pedro
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (06): : A3009 - A3015
  • [32] On the numerical stability of the second barycentric formula for trigonometric interpolation in shifted equispaced points
    Austin, Anthony P.
    Xu, Kuan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) : 1355 - 1374
  • [34] Barycentric rational interpolation at quasi-equidistant nodes
    Hormann, Kai
    Klein, Georges
    De Marchi, Stefano
    [J]. DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2012, 5 : 1 - 6
  • [35] On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
    Len Bos
    Stefano De Marchi
    Kai Hormann
    Georges Klein
    [J]. Numerische Mathematik, 2012, 121 : 461 - 471
  • [36] Matrices for the direct determination of the barycentric weights of rational interpolation
    Berrut, JP
    Mittelmann, HD
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (02) : 355 - 370
  • [37] Convergence rates of a family of barycentric osculatory rational interpolation
    Ke Jing
    Ning Kang
    Gongqin Zhu
    [J]. Journal of Applied Mathematics and Computing, 2017, 53 : 169 - 181
  • [38] Barycentric-thiele type blending rational interpolation
    Jiang, Ping
    Shi, Manhong
    [J]. Journal of Information and Computational Science, 2015, 12 (05): : 1731 - 1738
  • [39] Barycentric rational interpolation method for solving KPP equation
    Li, Jin
    Cheng, Yongling
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (05): : 3014 - 3029
  • [40] Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation
    Zhao, Qianjin
    Wang, Bingbing
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (01): : 187 - 192