Communication complexity meets cellular automata: Necessary conditions for intrinsic universality

被引:0
|
作者
Raimundo Briceño
Ivan Rapaport
机构
[1] Pontificia Universidad Católica de Chile,Facultad de Matemáticas
[2] Universidad de Chile,Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS)
来源
Natural Computing | 2021年 / 20卷
关键词
Cellular automata; Communication complexity; Intrinsic universality;
D O I
暂无
中图分类号
学科分类号
摘要
A natural way to interpret a cellular automaton (CA) is as a mechanism that computes, in a distributed way, some function f. In other words, from a computer science point of view, CAs can be seen as distributed systems where the cells of the CAs are nodes of a network linked by communication channels. A classic measure of efficiency in such distributed systems is the number of bits exchanged during the computation process. A typical approach is to look for bottlenecks: channels through which the nature of the function f forces the exchange of a significant number of bits. In practice, a widely used way to understand such congestion phenomena is to partition the system into two subsystems and try to find bounds for the number of bits that must pass through the channels that join them. Finding these bounds is the focus of communication complexity theory. Measuring the communication complexity of some problems induced by a CA ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} turned out to be tremendously useful to give clues regarding the intrinsic universality of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} (a CA is said to be intrinsically universal if it is capable of emulating any other). In fact, there exist particular problems P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {P}$$\end{document}’s for which the following key property holds: if ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} is intrinsically universal, then the communication complexity of P(ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {P}(\phi )$$\end{document} must be maximal. In this tutorial, we intend to explain the connections that were found, through a series of papers, between intrinsic universality and communication complexity in CAs.
引用
收藏
页码:307 / 320
页数:13
相关论文
共 50 条
  • [21] Universality of hexagonal asynchronous totalistic cellular automata
    Adachi, S
    Peper, F
    Lee, J
    [J]. CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 91 - 100
  • [22] COMPLEXITY OF IDENTIFICATION OF CELLULAR AUTOMATA
    ADAMATSKII, AI
    [J]. AUTOMATION AND REMOTE CONTROL, 1992, 53 (09) : 1449 - 1458
  • [23] Complexity Steering in Cellular Automata
    Peled, Bar Y.
    Carmi, Avishy Y.
    [J]. COMPLEX SYSTEMS, 2018, 27 (02): : 159 - 175
  • [24] Construction universality in purely asynchronous cellular automata
    Takada, Yousuke
    Isokawa, Teijiro
    Peper, Ferdinand
    Matsui, Nobuyuki
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (08) : 1368 - 1385
  • [25] CELLULAR AUTOMATA AS MODELS OF COMPLEXITY
    WOLFRAM, S
    [J]. NATURE, 1984, 311 (5985) : 419 - 424
  • [26] Intrinsic universality in automata networks I: Families and simulations
    Rios-Wilson, Martin
    Theyssier, Guillaume
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 997
  • [27] Classification of cellular automata and complexity
    Jin, XG
    Kim, TW
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4232 - 4237
  • [28] Thermodynamics and complexity of cellular automata
    Badii, R
    Politi, A
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (03) : 444 - 447
  • [29] The complexity of reversible cellular automata
    Sutner, K
    [J]. THEORETICAL COMPUTER SCIENCE, 2004, 325 (02) : 317 - 328
  • [30] On complexity of colloid cellular automata
    Adamatzky, Andrew
    Roberts, Nic
    Fortulan, Raphael
    Kheirabadi, Noushin Raeisi
    Mougkogiannis, Panagiotis
    Tsompanas, Michail-Antisthenis
    Martinez, Genaro J.
    Sirakoulis, Georgios Ch.
    Chiolerio, Alessandro
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):