Isoperimetric inequalities and regularity of A-harmonic functions on surfaces

被引:0
|
作者
Tomasz Adamowicz
Giona Veronelli
机构
[1] Polish Academy of Sciences,Institute of Mathematics
[2] Università di Milano Bicocca,Dipartimento di Matematica e Applicazioni
关键词
Primary 35R01; Secondary 58E20; 31C12; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the logarithmic and power-type convexity of the length of the level curves for a-harmonic functions on smooth surfaces and related isoperimetric inequalities. In particular, our analysis covers the p-harmonic and the minimal surface equations. As an auxiliary result, we obtain higher Sobolev regularity properties of the solutions, including the W2,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{2,2}$$\end{document} regularity. The results are complemented by a number of estimates for the derivatives L′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L'$$\end{document} and L′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L''$$\end{document} of the length of the level curve function L, as well as by examples illustrating the presentation. Our work generalizes results due to Alessandrini, Longinetti, Talenti and Lewis in the Euclidean setting, as well as a recent article of ours devoted to the harmonic case on surfaces.
引用
收藏
相关论文
共 50 条
  • [1] Isoperimetric inequalities and regularity of A-harmonic functions on surfaces
    Adamowicz, Tomasz
    Veronelli, Giona
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (02)
  • [2] Regularity theory and traces of A-harmonic functions
    Koskela, P
    Manfredi, JJ
    Villamor, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (02) : 755 - 766
  • [3] Isoperimetric type inequalities for harmonic functions
    Kalaj, David
    Mestrovic, Romeo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) : 439 - 448
  • [4] Isoperimetric inequalities and geometry of level curves of harmonic functions on smooth and singular surfaces
    Tomasz Adamowicz
    Giona Veronelli
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [5] Isoperimetric inequalities and geometry of level curves of harmonic functions on smooth and singular surfaces
    Adamowicz, Tomasz
    Veronelli, Giona
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)
  • [6] Regularity of solutions of degenerate A-harmonic equations
    Giannetti, Flavia
    Greco, Luigi
    di Napoli, Antonia Passarelli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (08) : 2651 - 2665
  • [7] Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions
    Jiang, Renjin
    Koskela, Pekka
    Yang, Dachun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (05): : 583 - 598
  • [8] Inequalities in the A-Harmonic Equations and the Related Topics
    Ding, Shusen
    Wang, Yong
    Xing, Yuming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [9] Inequalities in the A-Harmonic Equations and the Related Topics
    Shusen Ding
    Yong Wang
    Yuming Xing
    Journal of Inequalities and Applications, 2010
  • [10] REGULARITY FOR VERY WEAK SOLUTIONS TO A-HARMONIC EQUATION
    Liu Lin Gao Hongya Applied Science School
    Applied Mathematics A Journal of Chinese Universities(Series B), 2006, (03) : 343 - 349