Multifractal analysis of non-uniformly hyperbolic systems

被引:0
|
作者
Anders Johansson
Thomas M. Jordan
Anders Öberg
Mark Pollicott
机构
[1] University of Gävle,Divsion of Mathematics and Statistics
[2] University of Bristol,Department of Mathematics
[3] Uppsala University,Department of Mathematics
[4] University of Warwick,Mathematics Institute
来源
关键词
Lyapunov Exponent; Invariant Measure; Ergodic Theorem; Topological Entropy; Iterate Function System;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a multifractal formalismfor Birkhoff averages of continuous functions in the case of some non-uniformly hyperbolic maps, which includes interval examples such as the Manneville-Pomeau map.
引用
收藏
页码:125 / 144
页数:19
相关论文
共 50 条
  • [21] Non-uniformly hyperbolic flows and shadowing
    Sun, Wenxiang
    Tian, Xueting
    Vargas, Edson
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (01) : 218 - 235
  • [22] Statistics of closest return for some non-uniformly hyperbolic systems
    Collet, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 401 - 420
  • [23] A Livic Theorem for Matrix Cocycles Over Non-uniformly Hyperbolic Systems
    Backes, Lucas
    Poletti, Mauricio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (04) : 1825 - 1838
  • [24] Non-uniformly hyperbolic horseshoes in the standard family
    Matheus, Carlos
    Moreira, Carlos Gustavo
    Palis, Jacob
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (02) : 146 - 149
  • [25] Building Thermodynamics for Non-uniformly Hyperbolic Maps
    Climenhaga V.
    Pesin Y.
    Arnold Mathematical Journal, 2017, 3 (1) : 37 - 82
  • [26] EQUILIBRIUM STATES FOR NON-UNIFORMLY HYPERBOLIC SYSTEMS: STATISTICAL PROPERTIES AND ANALYTICITY
    Afonso, Suzete Maria
    Ramos, Vanessa
    Siqueira, Jaqueline
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (09) : 4485 - 4513
  • [27] A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms
    Hertz, F. Rodriguez
    Hertz, M. A. Rodriguez
    Tahzibi, A.
    Ures, R.
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2007, 14 : 74 - 81
  • [28] Stochastic stability of non-uniformly hyperbolic diffeomorphisms
    Alves, Jose F.
    Araujo, Vitor
    Vasquez, Carlos H.
    STOCHASTICS AND DYNAMICS, 2007, 7 (03) : 299 - 333
  • [29] On certain doubly non-uniformly and singular non-uniformly elliptic systems
    Montesinos, MTG
    Gallego, FO
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (06) : 1193 - 1204
  • [30] Thermodynamics of some non-uniformly hyperbolic attractors
    Zelerowicz, Agnieszka
    NONLINEARITY, 2017, 30 (07) : 2612 - 2646