Special Class of Liouville-Type Hyperbolic Equations

被引:0
|
作者
Zhiber A.V. [1 ]
Yur’eva A.M. [2 ]
机构
[1] Institute of Mathematics with Computer Center of Ufa Scientific Center of Russian Academy of Sciences, Ufa
[2] Bashkir State University, Ufa
关键词
35Q51; 37K60; differential substitution; Liouville-type equation; x-integral; y-integral;
D O I
10.1007/s10958-018-4135-z
中图分类号
学科分类号
摘要
In this paper, we obtain differential substitutions for a special class of Liouville-type equations that simplify these equations. We present necessary and sufficient conditions of the existence of y-integrals of the second order. We examine the principal case of necessary and sufficient conditions of the existence of y-integrals. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:594 / 602
页数:8
相关论文
共 50 条
  • [31] On Liouville-type theorems for the stationary nematic liquid crystal equations
    Zhang J.
    Wang S.
    Wu F.
    Zeitschrift fur Angewandte Mathematik und Physik, 2023, 74 (06):
  • [32] Liouville-type theorems for certain degenerate and singular parabolic equations
    DiBenedetto, Emmanuele
    Gianazza, Ugo
    Vespri, Vincenzo
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (15-16) : 873 - 877
  • [33] A Liouville-type theorem for the stationary Navier-Stokes equations
    Cho, Youseung
    Choi, Jongkeun
    Yang, Minsuk
    APPLIED MATHEMATICS LETTERS, 2023, 143
  • [34] Liouville-type results for some quasilinear anisotropic elliptic equations
    Farina, Alberto
    Sciunzi, Berardino
    Vuono, Domenico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 238
  • [35] Liouville-type theorem for Kirchhoff equations involving Grushin operators
    Yunfeng Wei
    Caisheng Chen
    Hongwei Yang
    Boundary Value Problems, 2020
  • [36] Symmetry and uniqueness of solutions to some Liouville-type equations and systems
    Gui, Changfeng
    Jevnikar, Aleks
    Moradifam, Amir
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (03) : 428 - 447
  • [37] Liouville-type results for semilinear elliptic equations in unbounded domains
    Henri Berestycki
    FranÇois Hamel
    Luca Rossi
    Annali di Matematica Pura ed Applicata, 2007, 186
  • [38] Liouville-type theorem for Kirchhoff equations involving Grushin operators
    Wei, Yunfeng
    Chen, Caisheng
    Yang, Hongwei
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [39] Liouville-type results for semilinear elliptic equations in unbounded domains
    Berestycki, Henri
    Hamel, Francois
    Rossi, Luca
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (03) : 469 - 507
  • [40] Liouville-Type Theorems for the Forced Euler Equations and the Navier-Stokes Equations
    Chae, Dongho
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) : 37 - 48