Benchmarking the performance of all-solid-state lithium batteries

被引:4
|
作者
Simon Randau
Dominik A. Weber
Olaf Kötz
Raimund Koerver
Philipp Braun
André Weber
Ellen Ivers-Tiffée
Torben Adermann
Jörn Kulisch
Wolfgang G. Zeier
Felix H. Richter
Jürgen Janek
机构
[1] Justus-Liebig-University Giessen,Institute of Physical Chemistry & Center for Materials Research
[2] Karlsruhe Institute of Technology,undefined
[3] Institute for Applied Materials,undefined
[4] BASF SE,undefined
[5] Volkswagen AG,undefined
[6] Group Research,undefined
[7] BMW Group,undefined
来源
Nature Energy | 2020年 / 5卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Increasing the specific energy, energy density, specific power, energy efficiency and energy retention of electrochemical storage devices are major incentives for the development of all-solid-state batteries. However, a general evaluation of all-solid-state battery performance is often difficult to derive from published reports, mostly due to the interdependence of performance measures, but also due to the lack of a basic reference system. Here, we present all-solid-state batteries reduced to the bare minimum of compounds, containing only a lithium metal anode, β-Li3PS4 solid electrolyte and Li(Ni0.6Co0.2Mn0.2)O2 cathode active material. We use this minimalistic system to benchmark the performance of all-solid-state batteries. In a Ragone-type graph, we compare literature data for thiophosphate-, oxide-, phosphate- and polymer-based all-solid-state batteries with our minimalistic cell. Using fundamental equations for key performance parameters, we identify research targets towards high energy, high power and practical all-solid-state batteries.
引用
收藏
页码:259 / 270
页数:11
相关论文
共 50 条
  • [41] Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries
    Li, Xiaona
    Liang, Jianwen
    Yang, Xiaofei
    Adair, Keegan R.
    Wang, Changhong
    Zhao, Feipeng
    Sun, Xueliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (05) : 1429 - 1461
  • [42] Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries
    Lian, Peng-Jie
    Zhao, Bo-Sheng
    Zhang, Lian-Qi
    Xu, Ning
    Wu, Meng-Tao
    Gao, Xue-Ping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20540 - 20557
  • [43] Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries
    Liu, Li
    Zhang, Dechao
    Xu, Xijun
    Liu, Zhengbo
    Liu, Jun
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2021, 37 (02) : 210 - 231
  • [44] Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries
    Li Liu
    Dechao Zhang
    Xijun Xu
    Zhengbo Liu
    Jun Liu
    Chemical Research in Chinese Universities, 2021, 37 : 210 - 231
  • [45] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [46] Designing the Interface Layer of Solid Electrolytes for All-Solid-State Lithium Batteries
    Xia, Qian
    Yuan, Shuoguo
    Zhang, Qiang
    Huang, Can
    Liu, Jun
    Jin, Hongyun
    ADVANCED SCIENCE, 2024, 11 (29)
  • [47] Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries
    Sang, Junwu
    Tang, Bin
    Pan, Kecheng
    He, Yan-Bing
    Zhou, Zhen
    ACCOUNTS OF MATERIALS RESEARCH, 2023, 4 (06): : 472 - 483
  • [48] LiBOB as a cathode additive for all-solid-state lithium sulfur batteries
    Deng, Shuang
    Li, Huiyao
    Zou, Youlan
    Tang, Wenhao
    Deng, Shiyan
    CHEMICAL ENGINEERING SCIENCE, 2025, 307
  • [49] FeS nanosheets as positive electrodes for all-solid-state lithium batteries
    Zhang, Qiang
    Yao, Xiayin
    Mwizerwa, Jean Pierre
    Huang, Ning
    Wan, Hongli
    Huang, Zhen
    Xu, Xiaoxiong
    SOLID STATE IONICS, 2018, 318 : 60 - 64
  • [50] Interface engineering of sulfide electrolytes for all-solid-state lithium batteries
    Xu, Ruochen
    Han, Fudong
    Ji, Xiao
    Fan, Xiulin
    Tu, Jiangping
    Wang, Chunsheng
    NANO ENERGY, 2018, 53 : 958 - 966